首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A semiclassical expression is derived for the spectral Wigner function of ergodic billiards in terms of a sum over contributions from classical periodic orbits. It represents a generalization of a similar formula by Berry, which does not immediately apply to billiard systems. These results are a natural generalization of Gutzwiller's trace formula for the density of states. Our theory clarifies the origin of scars in the eigenfunctions of billiard systems. However, in its present form, it is unable to predict what states will be dominated by individual periodic orbits. Finally, we compare some of the predictions of our theory with numerical results from the stadium. Within the limitations of numerical resolution, we find agreement between the two.  相似文献   

2.
The Lazutkin parameter for curves which are invariant under the billiard ball map is viewed symplectically in a way which makes it analogous to the sum of the values of a generating function over a closed orbit. This leads to relations among lengths of closed geodesics, lengths of invariant curves for the billiard map, rotation numbers, and the Lazutkin parameter. These relations establish the Birkhoff invariant and the expansion for the lengths of invariant curves in terms of the Lazutkin parameter as symplectic and spectral invariants (for the Dirichlet spectrum) and provide invariants which characterize a family of ellipses among smooth curves with positive curvature. Geodesic flow on a bounded planar region gives rise to several geometric objects among which are closed reflected geodesics and invariant curves-closed curves whose tangents are invariant under reflection at the boundary. On a bounded domain, the map that assigns to each geodesic segment its successor after reflection at the boundary is called the billiard ball map and its dual (in the cotangent bundle for the boundary) is called the boundary map.  相似文献   

3.
We discuss the impact of recent developments in the theory of chaotic dynamical systems, particularly the results of Sinai and Ruelle, on microwave experiments designed to study quantum chaos. The properties of closed Sinai billiard microwave cavities are discussed in terms of universal predictions from random matrix theory, as well as periodic orbit contributions which manifest as scars in eigenfunctions. The semiclassical and classical Ruelle zeta-functions lead to quantum and classical resonances, both of which are observed in microwave experiments on n-disk hyperbolic billiards.  相似文献   

4.
Random billiards are billiard dynamical systems for which the reflection law giving the post-collision direction of a billiard particle as a function of the pre-collision direction is specified by a Markov (scattering) operator P. Billiards with microstructure are random billiards whose Markov operator is derived from a “microscopic surface structure” on the boundary of the billiard table. The microstructure in turn is defined in terms of what we call a billiard cellQ, the shape of which completely determines the operator P. This operator, defined on an appropriate Hilbert space, is bounded self-adjoint and, for the examples considered here, a Hilbert-Schmidt operator. A central problem in the statistical theory of such random billiards is to relate the geometric characteristics of Q and the spectrum of P. We show, for a particular family of billiard cell shapes parametrized by a scale invariant curvature K (Fig. 2), that the billiard Laplacian PI is closely related to the ordinary spherical Laplacian, and indicate, by partly analytical and partly numerical means, how this provides asymptotic information about the spectrum of P for small values of K. It is shown, in particular, that the second moment of scattering about the incidence angle closely approximates the spectral gap of P.  相似文献   

5.
The spectral properties of a two-dimensional microwave billiard showing threefold symmetry have been studied with a new experimental technique. This method is based on the behavior of the eigenmodes under variation of a phase shift between two input channels, which strongly depends on the symmetries of the eigenfunctions. Thereby a complete set of 108 Kramers doublets has been identified by a simple and purely experimental method. This set clearly shows Gaussian unitary ensemble statistics, although the system is time-reversal invariant.  相似文献   

6.
In this paper, we investigate the localization properties of eigenstates for the infinite periodic and closed versions of the generalized ripple billiard (exemplifying corrugated waveguides and corrugated cavities, respectively) having Dirichlet and Neumann boundary conditions. In particular, we demonstrate the existence of strongly energy-localized eigenstates that suffer repulsion, in configuration space, from highly corrugated billiard boundaries. Thus, exhibiting the repulsion effect as a universal property present in billiards with corrugated boundaries. We also characterize this repulsion effect (both, in energy and in configuration space) and provide heuristic expressions for the repelled eigenstate profiles in configuration representation.  相似文献   

7.
We report a numerical study of the flexural modes of a plate using semi-classical analysis developed in the context of quantum systems. We first introduce the Clover billiard as a paradigm for a system inside which rays exhibit stable and chaotic trajectories. The resulting phase space explored by the ray trajectories is illustrated using the Poincare surface of section, and shows that it has both integrable and chaotic regions. Examples of the stable and the unstable periodic orbits in the geometry are presented. We numerically solve the biharmonic equation for the flexural vibrations of the Clover shaped plate with clamped boundary conditions. The first few hundred eigenvalues and the eigenfunctions are obtained using a boundary elements method. The Fourier transform of the eigenvalues show strong peaks which correspond to ray periodic orbits. However, the peaks corresponding to the shortest stable periodic orbits are not stronger than the peaks associated with unstable periodic orbits. We also perform statistics on the obtained eigenvalues and the eigenfunctions. The eigenvalue spacing distribution P(s) shows a strong peak and therefore deviates from both the Poisson and the Wigner distribution of random matrix theory at small spacings because of the C4v symmetry of the Clover geometry. The density distribution of the eigenfunctions is observed to agree with the Porter-Thomas distribution of random matrix theory. Received 12 February 2001 and Received in final form 17 April 2001  相似文献   

8.
顾福年 《物理学报》1963,19(10):617-626
本文以本征函数展开的方法,研究了波导管中格林函数的一般性质和形式。为了得到波导管的本征函数(简正波)和格林张量函数的一些关系,我们首先对格林函数作富氏变换,它的象函数在各向同性介质波导中以并矢形式作为最简单的表达方法,而在充有各向异性介质波导中可以表为ABA+e-ikz0的形式,这里A是坐标矩阵。用这种方法详细推导了均匀各向同性介质波导中的并矢格林函数。 关键词:  相似文献   

9.
Signs of quantum chaos in the spectra of linear Hamiltonian systems including scattering billiards of various configurations with kinks of the lateral surface have been experimentally studied. A billiard with kinks of the lateral surface at which the second derivative is indefinite constitutes a scattering K system. As a result, the spectrum of such a billiard and the corresponding model resonator becomes chaotic and the distribution of spectral intervals is close to a Wigner distribution. The spectral rigidity curves have been measured for a model microwave cavity whose shape is similar to the scattering billiard with kinks of the lateral surface. It has been found that the characteristics of the chaotic spectrum, the distribution of the spectral intervals, and the spectral rigidity curves for billiards with kinks of the lateral boundary exhibit signs of quantum chaos.  相似文献   

10.
We consider algebraic geometrical properties of the integrable billiard on a quadric Q with elastic impacts along another quadric confocal to Q. These properties are in sharp contrast with those of the ellipsoidal Birkhoff billiards in n . Namely, generic complex invariant manifolds are not Abelian varieties, and the billiard map is no more algebraic. A Poncelet-like theorem for such system is known. We give explicit sufficient conditions both for closed geodesics and periodic billiard orbits on Q and discuss their relation with the elliptic KdV solutions and elliptic Calogero system.  相似文献   

11.
A Kudrolli  S Sridhar 《Pramana》1997,48(2):459-467
We describe microwave experiments used to study billiard geometries as model problems of non-integrability in quantum or wave mechanics. The experiments can study arbitrary 2-D geometries, including chaotic and even disordered billiards. Detailed results on an L-shaped pseudo-integrable billiard are discussed as an example. The eigenvalue statistics are well-described by empirical formulae incorporating the fraction of phase space that is non-integrable. The eigenfunctions are directly measured, and their statistical properties are shown to be influenced by non-isolated periodic orbits, similar to that for the chaotic Sinai billiard. These periodic orbits are directly observed in the Fourier transform of the eigenvalue spectrum.  相似文献   

12.
《Physics letters. A》1999,263(3):157-166
For a billiard of a general shape a transformation is introduced which projects the boundary on the unit circle. This introduces a non-Euclidean metric on the plane which contains all relevant information of the shape of the boundary. Classically the straight lines of the free motion correspond to geodesics and quantum mechanically the energy spectrum is that of Laplace–Beltrami operator with Dirichlet boundary conditions on the unit circle. The geodesic equations are highly non-linear. Nevertheless for the interval between two consecutive scatterings we have two integrals of motion, the kinetic energy and the angular momentum. This fact helps to solve explicitly the geodesic equations. These solutions can be used to derive interesting properties for the classical scattering. Quantum mechanically the spectrum of the above billiards is obtained for certain parameter values both perturbatively for small values of the parameter and also using a diagonalization procedure. This method is applicable to any particular form of a billiard for which the transformation is invertible and can be used on one hand as a quick method of approximate spectral determination and as a theoretical tool to analyse specific properties of integrability and chaos through the associated connection form and the Laplace–Beltrami operator. Finally as a first indication of the potentiality of this method we present a graphical test where for very small deviations from the circular billiard an integrable and two non-integrable billiards can be distinguished by the distribution of the differences of the first order corrections while this distinction is not evident by the usual test for the nearest neighbor level spacings.  相似文献   

13.
We suggest that random matrix theory applied to a matrix of lengths of classical trajectories can be used in classical billiards to distinguish chaotic from non-chaotic behavior. We consider in 2D the integrable circular and rectangular billiard, the chaotic cardioid, Sinai and stadium billiard as well as mixed billiards from the Limaçon/Robnik family. From the spectrum of the length matrix we compute the level spacing distribution, the spectral auto-correlation and spectral rigidity. We observe non-generic (Dirac comb) behavior in the integrable case and Wignerian behavior in the chaotic case. For the Robnik billiard close to the circle the distribution approaches a Poissonian distribution. The length matrix elements of chaotic billiards display approximate GOE behavior. Our findings provide evidence for universality of level fluctuations—known from quantum chaos—to hold also in classical physics.  相似文献   

14.
Results from the Lax-Phillips Scattering Theory are used to analyze quantum mechanical scattering systems, in particular to obtain spectral properties of their resonances which are defined to be the poles of the scattering matrix. For this approach the interplay between the positive energy projection and the Hardy-space projections is decisive. Among other things it turns out that the spectral properties of these poles can be described by the (discrete) eigenvalue spectrum of a so-called truncated evolution, whose eigenvectors can be considered as the Gamow vectors corresponding to these poles. Further an expansion theorem of the positive Hardy-space part of vectors Sg (S scattering operator) into a series of Gamow vectors is presented.  相似文献   

15.
A version of scattering theory that was developed many years ago to treat nuclear scattering processes, has provided a powerful tool to study universality in scattering processes involving open quantum systems with underlying classically chaotic dynamics. Recently, it has been used to make random matrix theory predictions concerning the statistical properties of scattering resonances in mesoscopic electron waveguides and electromagnetic waveguides. We provide a simple derivation of this scattering theory and we compare its predictions to those obtained from an exactly solvable scattering model; and we use it to study the scattering of a particle wave from a random potential. This method may prove useful in distinguishing the effects of chaos from the effects of disorder in real scattering processes.  相似文献   

16.
17.
18.
It was proposed about a decade ago [M.G.E. da Luz, A.S. Lupu-Sax, E.J. Heller, Phys. Rev. E 56 (1997) 2496] a simple approach for obtaining scattering states for arbitrary disconnected open or closed boundaries C, with different boundary conditions. Since then, the so called boundary wall method has been successfully used to solve different open boundary problems. However, its applicability to closed shapes has not been fully explored. In this contribution we present a complete account of how to use the boundary wall to the case of billiard systems. We review the general ideas and particularize them to single connected closed shapes, assuming Dirichlet boundary conditions for the C’s. We discuss the mathematical aspects that lead to both the inside and outside solutions. We also present a different way to calculate the exterior scattering S matrix. From it, we revisit the important inside-outside duality for billiards. Finally, we give some numerical examples, illustrating the efficiency and flexibility of the method to treat this type of problem.  相似文献   

19.
In this paper we show that generalized eigenfunctions of many-body Hamiltonians H with short-range two-body interactions have distributional asymptotics at non-threshold channels. The leading terms of the asymptotics can be used to define a scattering matrix, and we show that this is the same (up to normalization) as that arising from the standard wave-operator approach. We also prove the existence of local distributional asymptotics for locally approximate generalized eigenfunctions in the more general setting of short range perturbations of a scattering metric, defined by Melrose in [13]. Received: 29 October 1997 / Accepted: 19 June 1998  相似文献   

20.
We show that a degeneracy of resonances is associated with a second rank pole in the scattering matrix and a Jordan chain of generalized eigenfunctions of the radial Schrödinger equation. The generalized Gamow-Jordan eigenfunctions are basis elements of an expansion in complex resonance energy eigenfunctions. In this biorthonormal basis, any operator f(H r which is a regular function of the Hamiltonian is represented by a nondiagonal complex matrix with a Jordan block of rank 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号