首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent experiments performed at the Paul Scherrer Institute (PSI) measurements were made of the yield of the two-photon transition of the fully-ionized muonic boron formed and quenched in a gaseous mixture of diborane B2H6 and helium. In the present work this yield is calculated for an idealized case of a very low diborane density when the main 2 s state decay modes competing with the two-photon transition are due to the electron transfer from helium to the μ-ion. As the rate of this transfer depends strongly on the relative velocity, a treatment is needed of the whole kinetics of processes occurring with the μ-ion in helium. Accordingly, within the optical model with a complex potential constructed before we calculate cross-sections of the elastic scattering and electron transfer. Then the time evolution of the μ-ion energy is considered and, finally, the yield is calculated. It proves that at helium pressures Torr this yield may be written in the form: ,where the factor C is greater than unity and increases rapidly with the initial energy E0 which the μ-ion has after its formation in the diborane molecule. Thus measurement of the pressure dependence of allows E0 to be estimated. The results obtained make it possible to suggest a similar parametrization of the PSI data. Received: 21 October 1997 / Revised: 16 January 1998 / Accepted: 2 March 1998  相似文献   

2.
We show that a nonlinear gradient term can be used to tune the width of pulse-like solutions to a generalized quintic Ginzburg-Landau equation. We investigate the dynamics of these solutions and show that weakly turbulent patches can persist for long times. Analogies with turbulent spots in plane Couette flows are discussed. Received: 29 May 1997 / Revised: 16 March 1998 / Accepted: 30 April 1998  相似文献   

3.
Methods for the characterization of bubbles in sea water by acoustic scattering are analyzed. Nonstationary linear and nonlinear sound scattering methods are proposed. The transient linear and nonlinear sound scattering allows the scattering by resonant gas bubbles to be distinguished from the scattering by other microinhomogeneities. The application of parametric arrays in oceanic experiments, together with the broadband frequency analysis of the backscattering coefficient, allows information about bubbles in sea water to be obtained. Experimental results on sound scattering and gas bubble distribution functions are presented for different conditions in the ocean.  相似文献   

4.
5.
The sound velocities for longitudinal and transverse waves have been measured in single crystalline BaFCl at room temperature using ultrasonic pulse echo and Brillouin scattering techniques. The complete set of elastic constants is deduced and lead to the bulk moduli values of BaFCl at ambiant conditions (, , ) which are compared with those obtained by a shell model. Moreover, using the ultrasonic technique under pressure, the pressure derivatives of the second order elastic constants at 298 K have been determined up to 0.3 GPa. All moduli increase linearly with pressure in this pressure range, allowing to determine directly and separately the first derivative of the bulk modulus B'0 = 5.8. These data are used to calculate a Murnaghan equation of state. A detailed comparison is given between our results with those recently obtained by X-ray diffraction on powder or calculated using the local density approximation method. Finally, the anisotropy of BaFCl under pressure is discussed. Received: 19 March 1998 / Revised: 15 May 1998 / Accepted: 19 May 1998  相似文献   

6.
Elastic scattering cross-sections for Pd, Ag, Cd, In, Sn, Sb, Pt, Au and Pb are measured at an angle of 90 in the X-ray region 5.41 keV. These energies fall between the high-energy side of the L- and M-shell absorption edges of the atoms considered. The present atomic region is significant for solid X-rays to assess the contribution of resonance and solid-state environmental effects. Also it is the anomalous scattering region for many of the atoms of the periodic table. Experimental results are compared with theoretical calculations based on form factor formalisms including the anomalous corrections and available recent S-matrix values. Based on the experimental evidence, the present results indicate the influence of solid-state environmental effects, the importance of anomalous corrections nearer to absorption edges, the correctness of revised high-energy limit values, the superiority of S-matrix predictions over form factor values on measured elastic scattering cross-sections in the X-ray regime and also show the resonance behavior around K, L and M absorption edges. Received: 27 January 1998 / Received in final form: 4 January 1999  相似文献   

7.
Shear break-up of reversible fractal clusters is investigated by ultrasound and multiple light scattering in the low shear regime. We consider a dense suspension of Rayleigh scatterers (particles or clusters) with acoustic properties close to those of the surrounding liquid so that the attenuation of the ultrasonic coherent field is weak and multiple scattering is negligible. The concept of variance in local particle volume fraction is used to derive an original expression of the ultrasound scattering cross-section per unit volume for Rayleigh fractal clusters. On the basis of a scaling law for the shear break-up of aggregates, then we derive the shear stress dependence of the ultrasound scattered intensity from a suspension of reversible fractal clusters. In a second part, we present rheo-acoustical experiments to study the shear break-up of hardened red cell aggregates in plane-plane flow geometry and we examine both the self consistent field approximation and the scaling laws used in microrheological models. We further compare the ability of acoustical backscattering and optical reflectometry techniques to estimate the critical disaggregation shear stress and the particle surface adhesive energy. Finally, the microrheological model from Snabre and Mills [#!ref5!#] based on a fractal approach is shown to describe the non Newtonian behavior of a dense distribution of hardened red cell aggregates. Received 12 November 1998 and Received in final form 17 May 1999  相似文献   

8.
Second-harmonic conversion of the 532-nm pulsed output of a doubled Nd:YAG laser in KDP was characterized by analyzing the changes in the acoustic signals generated in the crystal at different orientation conditions and for several incident fluences. Using a piezoelectric transducer, phase-matching condition was determined by maximizing the amplitude of the acoustic signals detected. The angular orientation for optimum harmonic efficiency was obtained with the same precision compared with the conventional optical procedure. The origin of the photoacoustic signals is the relaxed energy following the absorption of 266-nm photons. To determine the mechanisms of the 266-nm absorption processes, we also performed experiments under direct illumination with the 266-nm emission of the quadrupled Nd:YAG laser. A combination of a linear and nonlinear process occurs. Direct absorption by KDP as well as the participation of transient defects produced in the material were analyzed. Received: 27 July 1998 / Revised version: 19 March 1999 / Published online: 19 August 1999  相似文献   

9.
A three-parameter correlated wave function for the helium ground state is used to study the scattering reaction , where Ps stands for positronium atom. An exact analytical expression is constructed for the first Born scattering amplitude for Ps formation from helium. Based on this numerical results are presented for both differential and total cross-sections. It is demonstrated that the inner electronic correlation of the target atom plays a crucial role in explaining the discrepency between theory and experiment. Received: 9 April 1998 / Revised: 29 September 1998 / Accepted: 19 October 1998  相似文献   

10.
The theory presented by Gerardy and Ausloos for the calculation of the linear optical response of aggregates of spherical particles is analytically continued for absorbing embedding media. The method is based on the calculation of the extinction rate by a single particle embedded in an absorbing matrix. Explicit expressions for the extinction and scattering cross-sections are given. The method is applied to calculate the energy losses in several organic matrices with embedded silver clusters. Comparison with experimental data shows a very good agreement. Received: 21 December 1998  相似文献   

11.
There are many experimental situations in which polymer chains are constrained or localised into a small region of space (e.g. melt chains confined to a “tube”, network chains pinned by crosslinks). We show that detailed consideration of the quenched variables is vital in these experiments. This paper provides a crucial link between microscopic models with localising constraints and scattering patterns by a generalisation of the Random Phase Approximation (RPA) which allows for quenched translational variables. A method is developed which deals with correlations between the quenched variables brought about by incompressiblity (for example, in a polymer melt there are correlations between tubes because of the interaction between chains). As an example, the generalised RPA is applied to models based on the Warner-Edwards picture of the tube. Theoretical results for a melt of H-shaped copolymers are compared with experimental scattering. Early results suggest that to fit the scattering we may be forced to relax one of the central assumptions of the tube model; that the tube deforms affinely, that all chains retract by the same amount or that the tube diameter does not couple to the strain. Received 26 October 1998 and Received in final form 19 March 1999  相似文献   

12.
We discovered a simple quadratic equation, which relates scattering phases of particles on Fermi surface. We consider one-dimensional Bose gas and XXZ Heisenberg quantum spin chain. Received: 4 December 1997 / Accepted: 17 March 1998  相似文献   

13.
We report measurements of the ascending velocity of air bubbles in protein (bovine serum albumin) solutions. We show that, because of the protein molecules adsorbed on their surface, the terminal ascending velocity of bubbles is strongly reduced compared to the terminal velocity in pure water: protein- covered bubbles behave hydrodynamically as solid spheres. From the evolution of the ascending velocity with time, we can derive the amount of protein needed to immobilize the bubble interface which is 0.5 mg m-2, i.e. only one fifth of the amount adsorbed at equilibrium in the range of used bulk concentrations. Received: 6 March 1998 / Revised and accepted: 6 May 1998  相似文献   

14.
We propose a formulation of the term structure of interest rates in which the forward curve is seen as the deformation of a string. We derive the general condition that the partial differential equations governing the motion of such string must obey in order to account for the condition of absence of arbitrage opportunities. This condition takes a form similar to a fluctuation-dissipation theorem, albeit on the same quantity (the forward rate), linking the bias to the covariance of variation fluctuations. We provide the general structure of the models that obey this constraint in the framework of stochastic partial (possibly non-linear) differential equations. We derive the general solution for the pricing and hedging of interest rate derivatives within this framework, albeit for the linear case (we also provide in the appendix a simple and intuitive derivation of the standard European option problem). We also show how the “string” formulation simplifies into a standard N-factor model under a Galerkin approximation. Received: 30 January 1998 / Revised: 12 February 1998 / Accepted: 16 February 1998  相似文献   

15.
The dynamic behaviour of SonoVue microbubbles, a new generation ultrasound contrast agent, is investigated in real time with light scattering method. Highly diluted SonoVue microbubbles are injected into a diluted gel made of xanthan gum and water. The responses of individual SonoVue bubbles to driven ultrasound pulses are measured. Both linear and nonlinear bubble oscillations are observed and the results suggest that SonoVue microbubbles can generate strong nonlinear responses. By fitting the experimental data of individual bubble responses with Sarkar's model, the shell coating parameter of the bubbles and dilatational viscosity is estimated to be 7.0 nm-s-Pa.  相似文献   

16.
The sound scattering of free microbubbles released from strongly driven ultrasound contrast agents with brittle shell (e.g., Sonovist) is studied numerically. At high peak pressure of the driving pulses, the bubbles respond nonlinearly with cross sections pronouncedly larger than in the linear case; a large portion of the energy is radiated into high frequency ultrasound. Subsequent absorption of these high frequencies in the surrounding liquid (blood) diminishes the effective scattering cross section drastically. The absorption results in highly localized heating, with a substantial temperature rise within the first few microm from the bubble surface. The maximum heating in 1 microm distance is strongly dependent on driving pressure. Temperature elevations of more than 100 K can be achieved for amplitudes of Pa approximately 30 atm, which coincides with the highest pressures used in ultrasound diagnostics. The perfectly spherical collapses assumed here occur rarely, and the heating is highly localized and transient (approximately 10 micros). Therefore, a thermal hazard would only be expected at driving pressures beyond the diagnostic range.  相似文献   

17.
We present a new model of rubber elasticity where linear forces act to constrain the fluctuations of the eigenmodes of the phantom model. The model allows us to treat the constrained junction and the tube model within the same, transparent formalism, does not require any further approximations, and is particularly suited for the analysis of simulation data for (strained) model polymer networks. As an interesting side result we show that in order for the model to be consistent, the constraints (but not the mean polymer conformations!) have to deform affinely, a severe restriction that might also apply to other models. Complementary, we prove in analogy to the derivation of the virial theorem that introducing constraints into the phantom network Hamiltonian leads to extra terms in addition to the usual Doi-Edwards formulas for the polymer contribution to the stress tensor which vanish only for affinely deforming constraints. Received: 28 November 1997 / Received in final form and accepted: 31 March 1998  相似文献   

18.
We calculate the electron-phonon scattering rate for an asymmetric double barrier resonant tunneling structure based on dielectric continuum theory, including all phonon modes, and show that interface phonons contribute much more to the scattering rate than do bulk-like LO phonons for incident energies which are approximately within an order of magnitude of the Fermi energy. The maximum scattering rate occurs for incident electron energies near the quantum well resonance. Subband nonparabolicity has a significant influence on electron-phonon scattering in these structures. We show that the relaxation time is comparable to the dwell time of electrons in the quantum well for a typical resonant tunneling structure. Received: 23 December 1997 / Revised: 24 March 1998 / Accepted: 9 March 1998  相似文献   

19.
We present a Bethe Ansatz based investigation of a one-dimensional (1D) Heisenberg spin chain in a real 3D crystal lattice. We have shown that due to an influence of the lattice distortion on a crystalline field of ligands of magnetic ions, a Heisenberg antiferromagnetic spin chain is unstable under the appearance of a magnetic anisotropy of the “easy-plane” type. The effects of an external magnetic field and nonzero temperature onto such a phase transition are studied. Received: 19 January 1998 / Revised: 16 March 1998 / Accepted: 17 March 1998  相似文献   

20.
On the validity of Hertz contact law for granular material acoustics   总被引:1,自引:0,他引:1  
We discuss the acoustical behavior of a 1D model of granular medium, which is a chain of identical spherical beads. In this geometry, we are able to test quantitatively alternative models to the Hertz theory of contact between elastic solids. We compare the predictions of the different models to experimental results that concern linear sound wave propagation in the chain submitted to a static force, and nonlinear solitary wave propagation in an unconstrained chain. We use elastic, elastic-plastic and brittle materials, the beads roughness extends on one order of magnitude, and we also use oxidized metallic beads. We demonstrate experimentally that at low static forces, for all types of beads, the linear acoustic waves propagate in the system as predicted by Hertz's theory. At larger forces, after onset of permanent plastic deformation at the contacts, the brass beads exhibit non Hertzian behavior, and hysteresis. Except in the case of brass beads, the nonlinear waves follow the predictions of Hertz theory. Revised: 28 May 1998 / Accepted: 27 July 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号