首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We theoretically investigate surface plasmon resonance properties in Au and Ag cubic nanoparticles and find a novel plasmonic mode that exhibits simultaneous low extinction and high local field enhancement properties. We analyse this mode from different aspects by looking at the distribution patterns of local field intensity, energy flux, absorption and charge density. We find that in the mode the polarized charge is highly densified in a very limited volume around the corner of the nanocube and results in very strong local field enhancement. Perturbations of the incident energy flux and light absorption are also strongly localized in this small volume of the corner region, leading to both low absorption and low scattering cross section. As a result, the extinction is low for the mode. Metal nanoparticles involving such peculiar modes may be useful for constructing nonlinear compound materials with low linear absorption and high nonlinearity.  相似文献   

2.
Contrast harmonic imaging   总被引:5,自引:0,他引:5  
de Jong N  Bouakaz A  Ten Cate FJ 《Ultrasonics》2002,40(1-8):567-573
The behavior of ultrasound contrast agents depends highly on the acoustic pressure of the insonified ultrasound wave. For low pressure the expansion and compression is linear to the pressure, for medium acoustic pressure nonlinear behavior starts to occur and for high pressures, but still in the diagnostic range transient scattering can be noticed, resulting in an enhanced scattering followed by a disappearance of the bubble. The nonlinear and transient regime can be utilized for imaging of the contrast agent in or nearby tissue. The magnitude of the nonlinear signal from the contrast has to compete with the nonlinear component of the ultrasound wave, which is generated during propagation. It is shown that contrast is superior to tissue when using low frequencies and imaging the third or fourth harmonic of the transmitted frequency.  相似文献   

3.
The second harmonic radiation of acoustically driven bubbles is a useful discriminant for their presence in clinical ultrasound applications. It is useful because the scatter from a bubble at a frequency different from the driving can have a contrast-to-tissue ratio better than at the drive frequency. In this work a technique is developed to optimize the scattering from a microbubble at a frequency different from the driving. This is accomplished by adjusting the relative phase and amplitudes of the components of a dual-frequency incident ultrasound wave form. The investigation is focused primarily on the example of dual-mode driving at frequencies of 1 MHz and 3 MHz, with the scattering optimized at 2 MHz. Bubble radii of primary interest are 0.5 to 2 microm and driving amplitudes to 0.5 atm. Bubbles in this size range are sensitive to modulation of driving. It is shown that an optimal forcing scheme can increase the target response eightfold or more. This suggests new applications in imaging and in bubble detection.  相似文献   

4.
We adopted laser Thomson scattering for measuring the electron density and the electron temperature of microwave plasmas produced in helium at the pressures higher than the atmospheric pressure. The electron density decreased while we observed the increase in the electron temperature with the pressure. These are reasonable results by considering the decrease in the reduced electric field, the dominant loss of electrons via three‐body recombination with helium as the third body, and the production of electrons with medium energy via heavy particle collisions at the high gas pressure. The temporal variation of the electron temperature had the rise and the fall time constants of approximately 10 ns. The rapid heating and cooling of the electron temperature are due to the fast energy transfer from electrons to helium because of the high collision frequency in the high‐pressure discharge. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
时洁  杨德森  张昊阳  时胜国  李松  胡博 《中国物理 B》2017,26(7):74301-074301
The acoustical scattering cross section is usually employed to evaluate the scattering ability of the bubbles when they are excited by the incident acoustic waves. This parameter is strongly related to many important applications of performance prediction for search sonar or underwater telemetry, acoustical oceanography, acoustic cavitation, volcanology, and medical and industrial ultrasound. In the present paper, both the analytical and numerical analysis results of the acoustical scattering cross section of a single bubble under multi-frequency excitation are obtained. The nonlinear characteristics(e.g.,harmonics, subharmonics, and ultraharmonics) of the scattering cross section curve under multi-frequency excitation are investigated compared with single-frequency excitation. The influence of several paramount parameters(e.g., bubble equilibrium radius, acoustic pressure amplitude, and acoustic frequencies) in the multi-frequency system on the predictions of scattering cross section is discussed. It is shown that the combination resonances become significant in the multi-frequency system when the acoustic power is big enough, and the acoustical scattering cross section is promoted significantly within a much broader range of bubble sizes and acoustic frequencies due to the generation of more resonances.  相似文献   

6.
Simultaneously recovered absorption and scattering images that separate these optical property features within the female breast are demonstrated from frequency-domain measurements. A study of known absorbing and scattering objects is presented as a foundation for interpreting these in vivo images once the contrast space has been fully characterized. No measurable influence of absorbing-object contrast appears in the scattering images, whereas localized scattering contrast enhances the corresponding region within the absorption image by approximately 30% (e.g., a 2:1 scatterer also reconstructs as an approximately 1.3:1 absorber). Scattering and absorption images of a female volunteer with a 3.4-cm fibroadenoma show a clear 2:1 localized increase in absorption coefficient with little or no evidence of scattering enhancement in the lesion.  相似文献   

7.
The scattered acoustic pressure and scattered cross section of bubbles is studied using the scattered theory of bubbles. The nonlinear oscillations of bubbles and the scattering acoustic fields of a spherical bubble cluster are numerically simulated based on the bubble dynamic and fluid dynamic. The influences of the interaction between bubbles on scattering acoustic field of bubbles are researched. The results of numerical simulation show that the oscillation phases of bubbles are delayed to a certain extent at different positions in the bubble cluster, but the radii of bubbles during oscillation do not differ too much at different positions. Furthermore, directivity of the acoustic scattering of bubbles is obvious. The scattered acoustic pressures of bubbles are different at the different positions inside and outside of the bubble cluster. The scattering acoustic fields of a spherical bubble cluster depend on the driving pressure amplitude, driving frequency, the equilibrium radii of bubbles, bubble number and the radius of the spherical bubble cluster. These theoretical predictions provide a further understanding of physics behind ultrasonic technique and should be useful for guiding ultrasonic application.  相似文献   

8.
Extremely high pressures (approximately 10 TPa) and temperatures (5 x 10(5) K) have been produced using a single laser pulse (100 nJ, 800 nm, 200 fs) focused inside a sapphire crystal. The laser pulse creates an intensity over 10(14) W/cm2 converting material within the absorbing volume of approximately 0.2 microm3 into plasma in a few fs. A pressure of approximately 10 TPa, far exceeding the strength of any material, is created generating strong shock and rarefaction waves. This results in the formation of a nanovoid surrounded by a shell of shock-affected material inside undamaged crystal. Analysis of the size of the void and the shock-affected zone versus the deposited energy shows that the experimental results can be understood on the basis of conservation laws and be modeled by plasma hydrodynamics. Matter subjected to record heating and cooling rates of 10(18) K/s can, thus, be studied in a well-controlled laboratory environment.  相似文献   

9.
The average pressure inside a sonoluminescing bubble in sulfuric acid has been determined by two independent techniques: (1) plasma diagnostics applied to Ar atom emission lines, and (2) light scattering measurements of bubble radius vs time. For dimly luminescing bubbles, both methods yield intracavity pressures approximately 1500 bar. Upon stronger acoustic driving of the bubble, the sonoluminescence intensity increases 10,000-fold, spectral lines are no longer resolved, and radius vs time measurements yield internal pressures > 3700 bar. Implications for a hot inner core are discussed.  相似文献   

10.
Experimental investigations have not fully explored the interaction between ultrasound beams and microbubble contrast agents. Moreover theoretical investigations have not solved the problem of the microbubble oscillation. A simple in-vitro system based on a commercial scanner (ATL UM9) was used to insonate (3 MHz transmission) diluted contrast suspensions of Definity and Quantison at different acoustic pressures (0.27-1.52 MPa). The experimental data were referred to a blood mimicking fluid in order to extract an estimate of their scattering cross-section. The results were compared with the solutions of the three main bubble oscillatidn models, Rayleigh-Plesset, Herring and Gilmore. Non-linear solutions of the above models were produced numerically using the Mathematica Package Software. The experiments showed that both agents provided a linear increase in scattering cross-section with increasing acoustic pressure. The thick shelled Quantison provided an increasing number of scatterers with increasing acoustic pressure, which proved that free bubbles leaked out of the shell. At high acoustic pressures both Quantison and Definity scattering cross-sections were almost identical, and were probably that of a free bubble. The Rayleigh-Plesset model provided a scattering cross-section almost independent of acoustic pressure. On the contrary the scattering cross-sections calculated by the Herring and Gilmore models solutions displayed a definite dependence on acoustic pressure of an order higher than one, which is slightly higher than the order of dependence exhibited by the experimental data. However, the increase of the experimentally measured scattering cross-section with acoustic pressure was sharper than the calculated one by the above two models. This is most probably due to the fact that the models simulated damped and not free bubble oscillations. In conclusion the Rayleigh-Plesset model was inadequate in describing the bubble oscillations even at small diagnostic acoustic pressures. The Herring and Gilmore models could simulate the dependence of the scattering cross-section of encapsulated microbubbles on acoustic pressure. However the contribution of free bubble oscillations has still to be modelled.  相似文献   

11.
Optical property measurements have been made for unicellular algal suspensions of C. pyrenoidosa in the spectral range from 380 to 720 nm. The measurements include the extinction and absorption cross sections and the scattering phase function. Although the spectral dependence of the extinction cross section is weak, there is a strong wavelength dependence for absorption which is related to cell pigment content. The absorption cross section increases with increasing cell size and pigment content. The scattering albedo is approximately 0.9 over the entire spectrum, and the scattering phase function is strongly peaked in the forward direction.  相似文献   

12.
The two-photon absorption spectrum of a nickel bis(dithiolene) complex with extended conjugation and pi-donor substitution is measured by using Z-scan and pump-probe techniques with femtosecond pulses over the spectral range from 1.20 to 1.58 microm, which includes much of the telecommunications range. The peak two-photon cross section of over 5000 GM (1 GM = 10(-50) cm4 s photon(-1) molecule(-1)) occurs at approximately 1.24 microm, with significant two-photon absorption (>440 GM) throughout the spectral range examined.  相似文献   

13.
The diamond anvil cell (DAC) technique coupled with laser heating has become the most successful method for studying materials in the multimegabar pressure range at high temperatures. However, so far all DAC laser‐heating systems have been stationary: they are linked either to certain equipment or to a beamline. Here, a portable laser‐heating system for DACs has been developed which can be moved between various analytical facilities, including transfer from in‐house to a synchrotron or between synchrotron beamlines. Application of the system is demonstrated in an example of nuclear inelastic scattering measurements of ferropericlase (Mg0.88Fe0.12)O and h.c.p.‐Fe0.9Ni0.1 alloy, and X‐ray absorption near‐edge spectroscopy of (Mg0.85Fe0.15)SiO3 majorite at high pressures and temperatures. Our results indicate that sound velocities of h.c.p.‐Fe0.9Ni0.1 at pressures up to 50 GPa and high temperatures do not follow a linear relation with density.  相似文献   

14.
Multigroup cross sections for thermal radiation in a uranium plasma at solid state density and temperatures in the KeV range are presented. Bound-free and free-free absorption is taken into account. Compton scattering is approximately described by the Thomson formula and by the Compton cross section for free electrons at rest. The results contain tables of one-group Rosseland means of the mean free path (valid in the optically thick limit) and of six-group Planck absorption and scattering cross sections (valid in the optically thin limit).  相似文献   

15.
A new method named photothermal diffuse reflectance (PTDR) is presented. This method combines the diffuse reflectance spectroscopy with the photothermal technique and is particularly suited for the investigation of strongly scattering samples. This method takes advantage of the high spectral selectivity and absorption of the mid-infrared region with the larger scattering cross section and high detector sensitivity available in the near-infrared. A model describing the PTDR method is proposed and supported with experimental results. The potential of the PTDR technique is illustrated by experimental signals obtained from various scattering media like polymers, liquids and powders.  相似文献   

16.
The dependences of the transmission coefficients and the sum of the transmission and absorption coefficients for light with a wavelength of 643 nm in compressed pentaerythritol tetranitrate (PETN) samples containing aluminum nanoinclusions (average radius of 50 nm) on the pellet thickness and the mass fraction of aluminum nanoparticles in it are studied with an integrating sphere. The light absorption and scattering in this system is simulated using the Mie theory and a radiative transfer equation. The depth profile of absorbed energy in a sample is shown to approximately obey the Bouguer-Beer law. The effective cross section of radiation absorption by aluminum nanoparticles, which takes into account both light absorption and scattering by an ensemble of nanoparticles, exceeds the geometrical cross section.  相似文献   

17.
A solvable model of lateral line of a fish based on a wave equation with additional boundary conditions on a set of isolated points is proposed.Within the framework of this model it is shown that the ratio of pressures on lateral lines on different fish flanks,as well as the cross section of sound scattering on both the lines,strongly depends on angles of incidence of incoming sound waves.The strong angular dependence of the pressure ratio seems to be sufficient for the fish to determine the directions from which the sound is coming.  相似文献   

18.
Oxygen K-edge x-ray absorption spectra of high-density amorphous (HDA) ice, low-density amorphous ice Ic, ice Ih, normal and deuterated liquid water were measured with the synchrotron x-ray Raman scattering method under almost identical experimental conditions by in situ heating of an HDA ice sample. The distinct preedge structure previously reported in water was observed in all the spectra. The results show that core-hole excitations are localized and not strongly affected by the local environment. Therefore, the existence of the preedge feature is not a concise indicator of the magnitude of local disorder within the hydrogen bonded network. The intensity of the near-edge absorption shifts into the postedge region when the hydrogen bond network becomes more ordered. This observation is interpreted as an enhancement of Wannier over Frenkel excitations in an ordered crystal.  相似文献   

19.
The heating of solid targets irradiated by 5 x 10(20) W cm(-2), 0.8 ps, 1.05 microm wavelength laser light is studied by x-ray spectroscopy of the K-shell emission from thin layers of Ni, Mo, and V. A surface layer is heated to approximately 5 keV with an axial temperature gradient of 0.6 microm scale length. Images of Ni Ly(alpha) show the hot region has 100 G bar light pressure compresses the preformed plasma and drives a shock into the solid, heating a thin layer.  相似文献   

20.
A dispersion-type relation between photon scattering and absorption cross sections is derived. It is shown that the relation gives the correct scattering cross section in the low and high frequency limits, and is consistent with the Kramers-Heisenberg formula in the vicinity of a resonance. The practical application of the relation is illustrated by calculations of the scattering cross section and refractive index of He and Ne at STP and dry air at 1200°K from known absorption cross section data. The method is useful for obtaining scattering cross sections, polarizabilities, and refractive indices at elevated temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号