首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
大电流碳纳米管场发射阴极研究   总被引:1,自引:0,他引:1       下载免费PDF全文
报道了在较大发射面积上获得较大场发射电流的碳纳米管场发射阴极。为了加强场发射电流,在丝网印刷浆料中增加一种金属纳米颗粒,金属颗粒增强了碳纳米管发射体和衬底的接触,提高碳纳米管和衬底的粘附作用。利用改进后的丝网印刷方法制备了大电流碳纳米管场发射阴极,测得最大发射电流为68.0 mA,阴极有效发射面积约1.1 mm2,发射电流密度约6.2 A/cm2;并成功将改进方法制备的大电流场发射碳纳米管阴极应用于场发射真空器件原型。实验证明这种具有较大发射电流和较大发射电流密度的场发射能够满足部分大功率电子器件的需求。收稿日期:; 修订日期:  相似文献   

2.
This study investigates the use of graphene oxides (GOs) and carbon nanotubes (CNTs) embedded in polyacrylonitrile-based carbon nanofibers (GO–CNT/CNF) as electrodes for the supercapacitor. GO–CNT/CNF was prepared by electrospinning, and was subsequently stabilized and activated. The specific capacitance of GO–CNT/CNF is 120.5 F g−1 in 0.5 M Na2SO4 electrolyte, which is higher than or comparable to the specific capacitances of carbon-based materials in neutral aqueous electrolyte, as prepared in this study. GO–CNT/CNF also exhibits a superior cycling stability, and 109% of the initial specific capacitance after 5000 cycles. The high capacitance of GO–CNT/CNF could be attributed to the edge planes and the functional groups of GO, the highly electrical conductivity of CNT, and the network structure of the electrode.  相似文献   

3.
In this research, networks of single-walled carbon nanotubes (SWNTs) were used to host activated carbon (aC) microparticles to fabricate freestanding composite electrodes without the use of polymer binders. The aC-SWNT composite electrodes with up to 50 wt. % aC showed specific surface areas approaching 1000 m2/g and electrical conductivities >36 S/cm. The composite electrodes possessed the properties of both pure SWNT electrodes (e.g. low ohmic drop and rapid ion diffusion) and activated carbon particles (e.g. high specific capacitance). With an interconnected mesoporous microstructure and high electrical conductivity, the CNT networks provide an attractive alternative to polymer binders for forming freestanding electrodes for electrical energy storage devices. Here we show that micron-sized particles can be supported in this framework to utilize the performance enhancement and robustness provided by CNTs. Symmetric electrochemical capacitors fabricated with the electrodes in 6 M potassium hydroxide (KOH) aqueous electrolyte maintained specific capacitances of more than 45 F/g after 30,000 constant-current charge–discharge cycles with a current of 3.6 mA/cm2.  相似文献   

4.
This study sought to produce carbon nanotube (CNT) pulp out of extremely long, vertically aligned CNT arrays as raw materials. After high-speed shearing and mixing nitric acid and sulfuric acid, which served as the treatment, the researchers produced the desired pulp, which was further transformed into CNT paper by a common filtration process. The paper’s tensile strength, Young’s modulus and electrical conductivity were 7.5 MPa, 785 MPa and 1.0×104 S/m, respectively, when the temperature of the acid treatment was at 110°C. Apart from this, the researchers also improved the mechanical property of CNT paper by polymers. The CNT paper was soaked in polyethylene oxide, polyvinyl pyrrolidone, and polyvinyl alcohol (PVA) solution, eventually making the CNT/PVA film show its mechanical properties, which increased, while its electrical conductivity decreased. To diffuse the polymer into the CNT paper thoroughly, the researchers used vacuum filtration to fabricate a CNT/PVA film by penetrating PVA into the CNT paper. After a ten-hour filtration, the tensile strength and Young’s modulus of CNT/PVA film were 96.1 MPa and 6.23 GPa, respectively, which show an increase by factors of 12 and 7, respectively, although the material’s electrical conductivity was lowered to 0.16×104 S/m.  相似文献   

5.
The development of lit;triton ion batteries (LIBs) relies on the improvement in the performance of electrode materials with higher capacity, higher rate capability, and longer cycle lift;. In this review article, the recent advances in carbon nanotube (CNT) anodes, CNT-based composite electrodes, and CNT current collectors for high performance LIBs are concerned. CNT has received considerable attentions as a candidate material for the LIB applications. In addition to a possible choice for anode, CNT has been recognized as a solution in improving the performance of the state-of-the-art electrode materials. The CNT-based composite electrodes can be fabricated by mechanical or chem- ical approaches. Owing to the large aspect ratio and the high electrical conductivity, CNTs at very low loading can lead to an efficient conductive network. The excellent mechanical strength suggests the great potential in forming a structure scaffold to accommodate nano-sized electrode materials. Accordingly, the incorporation of CNTs will enhance the conductivity of the composite electrodes, mitigatc the agglomeration problem, decrease the dependence on inactive binders, and improve the clcctrochenfical properties of both anode and cathode materials remarkably. Freestanding CNT network can be used as lightweight current collectors to increase the overall energy density of LIBs. Finally, research perspectives for exploiting CNTs in high-performance LIBs are discussed.  相似文献   

6.
We have studied the effect of self-assembled monolayer (SAM) on the performance and bias-induced changes in bottom contact, inkjet printed organic thin-film transistors (OTFTs) with 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS pentacene). The device was fabricated using the photo-definable photoacryl (PA) and silver (Ag) as gate insulator and source/drain metal electrodes, respectively. The SAM was formed by immersing the patterned Ag electrodes in pentafluorothiophenol (PFBT) solution or by spin coating of phenethyltrichlorosilane (PTS) on the substrate, and TIPS pentacene was inkjet printed at 90 °C. The OTFT with SAMs exhibited the field-effect mobility of 0.18 cm2/Vs and showed the stretched exponential decay with time constant of 1.13 × 107 s and exponential exponent of 0.28.  相似文献   

7.
Titanium oxide nanoparticles were coated on multiwall carbon nanotubes (MWCNTs) using an atmospheric pressure chemical vapor deposition (CVD) to achieve highly compact nanoparticles of about 5 nm on CNT structure. The CNTs with a diameter of about 50 nm were grown by plasma enhanced CVD. Gas sensitivity of the fabricated structure was investigated and compared with TiO2/CNT composite-based gas sensors. The effect of the structural interaction between the nanoparticles and the CNT wall on sensing mechanism of the as-prepared gas sensors was investigated. Ultrasensitive gas sensors were obtained by TiO2/CNT nanostructures with strong interaction between the MWCNT and the TiO2 nanoparticles. The measurements show high chemical activity and exceptional electrical response of the as-prepared structure being exposed to gases. Scanning and transmission electron microscopy and X-ray diffraction analysis were used to obtain structural information.  相似文献   

8.
Supercapacitor (SC) electrodes fabricated with the combination of carbon nanotubes (CNTs) and metal oxides are showing remarkable advancements in the electrochemical properties. Herein, NiO decorated CNT/ZnO core-shell hybrid nanocomposites (CNT/ZnO/NiO HNCs) are facilely synthesized by a two-step solution-based technique for the utilization in hybrid supercapacitors. Benefitting from the synergistic advantages of three materials, the CNT/ZnO/NiO HNCs based electrode has evinced superior areal capacity of ~67 µAh cm−2 at a current density of 3 mA cm−2 with an exceptional cycling stability of 112% even after 3000 cycles of continuous operation. Highly conductive CNTs and electrochemically active ZnO contribute to the performance enhancement. Moreover, the decoration of NiO on the surface of CNT/ZnO core-shell increases the electro active sites and stimulates the faster redox reactions which play a vital role in augmenting the electrochemical properties. Making the use of high areal capacity and ultra-long stability, a hybrid supercapacitor (HSC) was assembled with CNT/ZnO/NiO HNCs coated nickel foam (CNT/ZnO/NiO HNCs/NF) as positive electrode and CNTs coated NF as negative electrode. The fabricated HSC delivered an areal capacitance of 287 mF cm−2 with high areal energy density (67 µWh cm−2) and power density (16.25 mW cm−2). The combination of battery type CNT/ZnO/NiO HNCs/NF and EDLC type CNT/NF helped in holding the capacity for a long period of time. Thus, the systematic assembly of CNTs and ZnO along with the NiO decoration enlarges the application window with its high rate electrochemical properties.  相似文献   

9.
The aim of the present study was to compare infrared thermography and thermal contact sensors for measuring skin temperature during cycling in a moderate environment. Fourteen cyclists performed a 45-min cycling test at 50% of peak power output. Skin temperatures were simultaneously recorded by infrared thermography and thermal contact sensors before and immediately after cycling activity as well as after 10 min cooling-down, representing different skin wetness and blood perfusion states. Additionally, surface temperature during well controlled dry and wet heat exchange (avoiding thermoregulatory responses) using a hot plate system was assessed by infrared thermography and thermal contact sensors. In human trials, the inter-method correlation coefficient was high when measured before cycling (r = 0.92) whereas it was reduced immediately after the cycling (r = 0.82) and after the cooling-down phase (r = 0.59). Immediately after cycling, infrared thermography provided lower temperature values than thermal contact sensors whereas it presented higher temperatures after the cooling-down phase. Comparable results as in human trials were observed for hot plate tests in dry and wet states. Results support the application of infrared thermography for measuring skin temperature in exercise scenarios where perspiration does not form a water film.  相似文献   

10.
A method for uniform deposition of a hydrophobizing polymer from a solution in supercritical carbon dioxide (SC-CO2) onto the surface of carbon fabric used for manufacturing gas diffusion layers of fuel cells is developed. This approach, based on using Teflon AF 2400, a SC-CO2-soluble copolymer, is compared to the traditional method for hydrophobization of the gas diffusion layer of a fuel cell, based on the use of an aqueous dispersion of Teflon 30N. Hydrophobizing polymers were deposited on the surface of a highly rough carbon fabric (Saati), an electrically conductive gas diffusion layer material with good mechanical and resource characteristics. In one of the versions of the method of deposition from SC-CO2, the hydrophobic film was subjected to additional annealing at a temperature above the glass transition temperature of Teflon AF 2400 amorphous copolymer. It is shown that this approach makes it possible to form a uniform thin fluoropolymer film on carbon fibers, which imparts the most stable superhydrophobic properties to the surface of the gas diffusion layer at very low amounts of deposited polymer. In this case, the contact angle reaches a value much greater than that previously reported in the literature for similar methods. Prolonged immersion in water (for 1000 h) or wash in the presence of detergent does not impair the superhydrophobicity of the gas diffusion layer. The developed gas-diffusion layer was used to prepare an electrode for phosphoric fuel cell, the current-voltage characteristic of which indicates a satisfactory performance. The results obtained show that adopted approach is promising for developing gas diffusion layers for fuel cell electrodes.  相似文献   

11.
It is demonstrated that two grating interferometers with high spatial resolutions can successfully be applied for the mechanical characterisation of the advanced fabric composite materials. Based on these two techniques, the mechanical properties of two kinds of fabric laminates are obtained without assumption of uniform strain fields to be used in the characterisation approaches using the local strain sensors. The degree of the yarn crimp effects of the two laminates is compared in terms of the out-of-plane displacement derivatives. Especially, it is shown that the grating shearing interferometer is appropriate for the crimped fabric structure requiring a three-dimensional analysis. The modification from moiré interferometer to grating shearing interferometer is performed by introducing a Michelson interferometer modified for image shearing.  相似文献   

12.
We report a straightforward approach to prepare multifunctional manganese–gold nanoparticles by attaching Mn(II) ions onto the surface of 20 nm citrate-capped gold nanoparticles. In vitro MRI measurements made in agarose gel phantoms exhibited high relaxivity (18.26 ± 1.04 mmol−1 s−1). Controlled incubation of the nanoparticles with mesenchymal stem cells (MSCs) was used to study cellular uptake of these particles and this process appeared to be controlled by the size of the nanoparticle aggregates in the extracellular solution. SEM images of live MSCs showed an increased concentration of particles near the cell membrane and a distribution of the size of particles within the cells. Survivability for MSCs in contact with Mn–Au NPs was greater than 97% over the 3-day period and up to the 1 mM Mn used in this study. The high relaxivity and low cell mortality are suggestive of an enhanced positive contrast agent for in vitro or in vivo applications.  相似文献   

13.
Individual multi-walled carbon nanotubes (CNTs) were deposited onto microelectrodes and embedded in nickel to achieve low-ohmic contact resistances. Electroless deposition of nickel onto gold/iron, palladium, and cobalt microelectrodes was used to form electrically stable bonds at the interfaces between the electrodes and CNTs. Resistance measurements showed that the contact resistances of the CNTs on gold/iron and palladium were significantly improved by nickel embedding, whereas no further improvement was found for the CNTs on cobalt. Electroless metal deposition is a parallel process providing stable electrical and mechanical contacts between CNTs and metallic microelectrodes. PACS 81.07.De  相似文献   

14.
Well-ordered nanoporous alumina templates were fabricated by two-step anodization method by applying a constant voltage of 40 V in oxalic acid solution or of 25 V in sulfuric acid solution. The cylindrical pore diameter and pore density of the templates utilized for the carbon nanotube (CNT) growth were 86 ± 5 nm and 1.2 × 1010 cm−2 in oxalic acid solution and 53 ± 1 nm and 3.1 × 1010 cm−2 in sulfuric acid solution, respectively. The CNTs with uniform diameter of 50 ± 10 nm (oxalic acid) and 44 ± 2 nm (sulfuric acid) were grown on the porous alumina template as electrode materials for the electrochemical double layer capacitor (EDLC). The EDLC characteristics were examined by measuring the capacitances from cyclic voltammograms and the charge–discharge curves. The specific capacitances of the CNT electrodes are 30 ± 1 F/g (Φ = 50 ± 10 nm) and 121 ± 5 F/g (Φ = 44 ± 2 nm). The high specific capacitance of the CNT electrode was achieved by using nanoporous alumina templates with the high pore density and the small and uniform pore diameter.  相似文献   

15.
We report the fabrication of electrically functional polyaniline thin-film microdevices. Polyaniline films were printed in the solid phase by Laser-Induced Forward Transfer directly between Au electrodes on a Si/SiO2 substrate. To apply solid-phase deposition, aniline was in situ polymerized on quartz substrates. Laser deposition preserves the morphology of the films and delivers sharp features with controllable dimensions. The electrical characteristics of printed polyaniline present ohmic behavior, allowing for electroactive applications. Results on gas sensing of ammonia are presented.  相似文献   

16.
Facile patterning of electrodes is required for various electronic applications, particularly in solution-processed oxide thin-film transistors (TFTs). In this study, source and drain electrodes were prepared from silver nanowires (AgNWs) using spray-coating and hot press techniques. Although spray coating allowed production of AgNW patterns, which could function as electrodes in oxide TFT, the as-sprayed films did not provide a sufficient physical contact with oxide semiconductors and formed interspaces that impeded electron injection. At the same time, hot press technique produced denser AgNW networks that had a tight contact with the oxide semiconductors. As a result, hot-pressed films were considered as satisfactory source and drain electrodes for high-performance oxide TFTs, as they provided an easy electron injection. Finally, the prepared oxide TFTs with hot-pressed AgNW electrodes exhibited average field-effect mobility of 4.75 ± 1.5 cm2/V, significantly higher than that of the TFTs with as-sprayed AgNW electrodes (0.08 ± 0.05 cm2/V).  相似文献   

17.
Organic thin-film transistors (OTFTs) with top- and bottom-contact configurations were fabricated using silver nano-inks printed by laser forward transfer for the gate and source/drain electrodes with pentacene and poly-4-vinylphenol as the organic semiconductor and dielectric layers, respectively. The volume of the laser-printed Ag pixels was typically in the subpicoliter (0.2–0.4 pl) range. The top-contact OTFTs resulted in lower contact resistance compared to those obtained from the bottom-contact OTFTs, and showed improved overall device performance. The top-contact OTFTs exhibited field-effect mobilities of ∼0.16 cm2 V−1 s−1 and on/off current ratios of ∼105.  相似文献   

18.
《Current Applied Physics》2010,10(5):1302-1305
Bottom-contact (BC) copper phthalocyanine (CuPc) thin film transistor with UV/ozone treated Au as a source/drain electrode was fabricated and the contact resistance was estimated from the transmission line method (TLM). Comparing the properties of OTFT with untreated Au electrode, the performance of the BC CuPc-TFT with the UV/ozone treated Au electrodes was significantly improved: saturation mobility increased from 4.69 × 10−3 to 2.37 × 10−2 cm2/V s, threshold voltage reduced from −29.1 to −6.4 V, and threshold swing varied from 5.08 to 2.25 V/decade. The contact resistance of the device with UV/ozone treated Au electrodes was nearly 20 times smaller than that of the device with untreated Au electrodes at the gate voltage of −20 V. This result indicated that using the UV/ozone treated Au electrode is an effective method to reduce the contact resistance. The present BC configuration with UV/ozone treated Au electrodes could be a significant step towards the commercialization of OTFT technology.  相似文献   

19.
In order to use carbon nanotube (CNT)-supported catalyst as fuel cell electrodes, Pt-Ni-Fe/CNT/carbon paper (CP) electrode was prepared using an ethylene glycol reduction method. CNTs were directly synthesized on Ni-impregnated carbon paper, plain carbon cloth, and Teflonized carbon cloth using chemical vapor deposition. FESEM and TEM images and thermogravimetric analysis indicated that in situ CNT on carbon paper (ICNT/CP) possesses more appropriate structural quality and stronger adhesion to the substrate than other substrates. The contact angle analysis demonstrated that the degree of ICNT/CP surface hydrophobicity encountered a 24% increase in comparison to CP and promoted to superhydrophobicity from hydrophobicity. The polarization curves and electrochemical impedance spectroscopy results of the loaded Pt-Ni-Fe on in situ and ex situ CNT/CP illustrated that the power density increased and charge transfer resistance reduced compared to commercial Pt/C loaded on CP. The results can be attributed to the outstanding properties of CNTs and high catalytic activity of triple catalysts causing alloying of Pt with Ni and Fe, which makes them a proper candidate to be used as cathode electrodes in proton exchange membrane fuel cells.  相似文献   

20.
潘金艳  张文彦  高云龙 《物理学报》2010,59(12):8762-8769
通过制作亲碳性铟锡氧化物(ITO)/Ti复合电极,改善移植型碳纳米管(CNT)冷阴极的导电电极与CNT膜层之间附着性能,从而消除CNT与电极间的界面势垒和非欧姆接触对CNT阴极场发射均匀性和稳定性的影响.采用磁控溅射技术和丝网印刷工艺制作了ITO/Ti基CNT阴极.用X射线衍射仪和场致发射扫描电子显微镜表征CNT阴极结构,结果显示热处理后的ITO/Ti基CNT阴极中可能有TiC相生成,从而使得导电电极与CNT形成有中间物的强作用体系.该体系降低甚至消除电极与CNT之间的界面势垒,增加了CNT与电极间形成欧姆接触的概率.用四探针技术分析电阻率,结果表明ITO/Ti复合电极具有电阻并联效果,CNT阴极导电性能提高.场致发射特性测试表明ITO/Ti基CNT阴极的场致发射电流达到384μA/cm2,较普通ITO基CNT阴极的场致发射电流有显著提高,能够激发测试阳极发出均匀、稳定的高亮度荧光.制作ITO/Ti复合电极是实现场致发射稳定、均匀的低功耗CNT阴极的有效途径.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号