首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cooperative Non-Orthogonal Multiple Access (NOMA) with Simultaneous Wireless Information and Power Transfer (SWIPT) communication can not only effectively improve the spectrum efficiency and energy efficiency of wireless networks but also extend their coverage. An important design issue is to incentivize a full duplex (FD) relaying center user to participate in the cooperative process and achieve a win–win situation for both the base station (BS) and the center user. Some private information of the center users are hidden from the BS in the network. A contract theory-based incentive mechanism under this asymmetric information scenario is applied to incentivize the center user to join the cooperative communication to maximize the BS’s benefit utility and to guarantee the center user’s expected payoff. In this work, we propose a matching theory-based Gale–Shapley algorithm to obtain the optimal strategy with low computation complexity in the multi-user pairing scenario. Simulation results indicate that the network performance of the proposed FD cooperative NOMA and SWIPT communication is much better than the conventional NOMA communication, and the benefit utility of the BS with the stable match strategy is nearly close to the multi-user pairing scenario with complete channel state information (CSI), while the center users get the satisfied expected payoffs.  相似文献   

2.
This paper studies artificial noise (AN)-aided beamforming design in an intelligent reflecting surface (IRS)-assisted system empowered by simultaneous wireless information and power transfer (SWIPT) technique. Multiple power splitting (PS) single-antenna receivers simultaneously receive information and energy from a multi-antenna base station (BS). Although all users are legitimate, in each transmission interval only one receiver is authorized to receive information and the others are only allowed to harvest power which are considered as unauthorized receivers (URs). To prevent information decoding by URs, AN signal is transmitted from the BS. We adopt a non-linear model for energy harvesting. In the optimization problem, we minimize the total transmit power, and for this purpose, we utilize an alternating optimization (AO) algorithm. For the non-convex rank-one constraint for IRS phase shifts, we utilize a sequential rank-one constraint relaxation (SROCR) algorithm. In addition to single antenna URs scenario, we investigate multi-antenna URs scenario and evaluate their performance. Simulation results validate the effectiveness of using IRS.  相似文献   

3.
Massive multiple-input-multiple-output (Massive MIMO) significantly improves the capacity of wireless communication systems. However, large-scale antennas bring high hardware costs, and security is a vital issue in Massive MIMO networks. To deal with the above problems, antenna selection (AS) and artificial noise (AN) are introduced to reduce energy consumption and improve system security performance, respectively. In this paper, we optimize secrecy energy efficiency (SEE) in a downlink multi-user multi-antenna scenario, where a multi-antenna eavesdropper attempts to eavesdrop the information from the base station (BS) to the multi-antenna legitimate receivers. An optimization problem is formulated to maximize the SEE by jointly optimizing the transmit beamforming vectors, the artificial noise vector and the antenna selection matrix at the BS. The formulated problem is a nonconvex mixed integer fractional programming problem. To solve the problem, a successive convex approximation (SCA)-based joint antenna selection and artificial noise (JASAN) algorithm is proposed. After a series of relaxation and equivalent transformations, the nonconvex problem is approximated to a convex problem, and the solution is obtained after several iterations. Simulation results show that the proposed algorithm has good convergence behavior, and the joint optimization of antenna selection and artificial noise can effectively improve the SEE while ensuring the achievable secrecy rate.  相似文献   

4.
The requirement of excellent anywhere–anytime data transmission service in future wireless network encourages us to reconsider the fairness among different types of users. To this end, the three-dimensional Poisson point process (PPP) model-based closed-form expressions of coverage probability for both cell-edge user (CEU) and cell inner user (CIU) under multi-user multiple-input multiple-output (MIMO) are derived. It is found that the spectral efficiency of CEU is about 30% of that of CIU under single user scenario. Moreover, when the number of users equals to that of base station (BS) antennas, the difference of coverage probability between CIU and CEU decreases with the number of BS antennas for large signal-to-interference ratio threshold. In addition, for the fixed number of users case, an inverted U-shaped relationship (thereby resulting in a worst case) between the fairness among CEU and CIU, and the number of BS antennas is detected. The impact of massive MIMO on the fairness under the metric of spectral efficiency is also discussed.  相似文献   

5.
张海洋  黄永明  杨绿溪 《物理学报》2015,64(2):28402-028402
针对无线携能通信系统中存在能量获取不均衡的问题, 提出了一种基于能量获取比例公平的波束成形设计方案. 该方案在满足信息接收者的信干噪比以及发送端的最大发送功率等约束条件的基础上, 通过优化波束矢量实现能量获取的比例公平. 此设计在数学上是一个很难直接求解的非凸优化问题.为此, 本文首先利用半定松弛技术将其转换为半定规划问题, 然后结合二分法提出了可以获得最优波束矢量的迭代算法.此外, 在发送端仅知道部分信道状态信息且知道信道误差范围的情况下, 采用最差性能最优的方法对原优化问题进行了鲁棒波束成形设计, 并提出了相应的迭代算法. 仿真结果表明所提算法均可实现能量获取的比例公平且性能达到全局最优.  相似文献   

6.
Reconfigurable intelligent surface (RIS), a planar metasurface consisting of a large number of low-cost reflecting elements, has received much attention due to its ability to improve both the spectrum and energy efficiency (EE) by reconfiguring the wireless propagation environment. In this paper, we propose a base station (BS) beamforming and RIS phase shift optimization technique that maximizes the EE of a RIS-aided multiple-input–single-output system. In particular, considering the system circuits’ energy consumption, an EE maximization problem is formulated by jointly optimizing the active beamforming at the BS and the passive beamforming at the RIS, under the constraints of each user’ rate requirement, the BS’s maximal transmit power budget and unit-modulus constraint of the RIS phase shifts. Due to the coupling of optimization variables, this problem is a complex non-convex optimization problem, and it is challenging to solve it directly. To overcome this obstacle, we divide the problem into active and passive beamforming optimization subproblems. For the first subproblem, the active beamforming is given by the maximum ratio transmission optimal strategy. For the second subproblem, the optimal phase shift matrix at the RIS is obtained by exploiting sine cosine algorithm (SCA). Moreover, for this case where each reflection element’s working state is controlled by a circuit switch, each reflection element’s switch value is optimized with the aid of particle swarm optimization algorithm. Finally, numerical results verify the effectiveness of our proposed algorithm compared to other algorithms.  相似文献   

7.
We consider an intelligent reflecting surface (IRS)-assisted wireless powered communication network (WPCN) in which a multi antenna power beacon (PB) sends a dedicated energy signal to a wireless powered source. The source first harvests energy and then utilizing this harvested energy, it sends an information signal to destination where an external interference may also be present. For the considered system model, we formulated an analytical problem in which the objective is to maximize the throughput by jointly optimizing the energy harvesting (EH) time and IRS phase shift matrices. The optimization problem is high dimensional non-convex, thus a good quality solution can be obtained by invoking any state-of-the-art algorithm such as Genetic algorithm (GA). It is well-known that the performance of GA is generally remarkable, however it incurs a high computational complexity. To this end, we propose a deep unsupervised learning (DUL) based approach in which a neural network (NN) is trained very efficiently as time-consuming task of labeling a data set is not required. Numerical examples show that our proposed approach achieves a better performance–complexity trade-off as it is not only several times faster but also provides almost same or even higher throughput as compared to the GA.  相似文献   

8.
Intelligent reflecting surface (IRS) has arisen as a promising technology to reconfigure the wireless propagation environment cost-effectively. Most of the existing works on IRS focused on the passive beamforming (PB) optimization and performance enhancement without considering the multiple inter-IRS links cooperation that did not reveal the full preponderance of the multi-IRS-assisted reconfigurable communication system. In this work, we investigate a double-IRS-assisted multiple input single output (MISO) downlink communication system with the active beamforming (AB) and the cooperative PB design in the absence of direct link. Taking both the double-reflection links and the single-reflection links into account, the AB at the base station (BS) and the cooperative PB at two IRSs are jointly optimized to maximize the weight sum rate (WSR) under the constraint of the transmit power. To tackle the problem, we propose the double-IRS-assisted fractional programming block coordinate descent (D-FPBCD) method to find the sub-optimal solution with low complexity. We first reconstruct the original issue as a tractable one by the closed-form fractional programming (FP) approach, then, the prox-linear block coordinate descent (BCD) and successive convex approximation (SCA) techniques are used to find the sub-optimal solution. Finally, simulation results demonstrate the effectiveness of the proposed double-IRS-assisted wireless communication scheme.  相似文献   

9.
In this paper, we investigate the ergodic sum rate (ESR) for the downlink of a multi-user satellite–aerial–terrestrial network (SATN) with decode-and-forward (DF) protocol, where a multi-antenna unmanned aerial vehicle (UAV) acts as an aerial relay to assist the signal convey from satellite to multiple terrestrial users, which is also corrupted by co-channel interference. To maximize the ESR of the considered system, a beamforming (BF) scheme based on statistical channel state information is proposed to conduct space division multiple access (SDMA) in the UAV–terrestrial links. Then, by assuming that the satellite–UAV link and the UAV–terrestrial links undergo correlated Shadowed-Rician fading and correlated Rayleigh fading, respectively, we derive the analytical expression of ESR for our considered system with proposed BF scheme. Finally, numerical results are provided to verify the correctness of the theoretical analysis and demonstrate the superiority of our proposed BF scheme.  相似文献   

10.
In this contribution we present the performance of a multi-user transmitter preprocessing (MUTP) assisted multiple-input multiple-output (MIMO) space division multiple access (SDMA) system, aided by double space time transmit diversity (DSTTD) and space time block code (STBC) processing for downlink (DL) and uplink (UL) transmissions respectively. The MUTP is invoked by singular value decomposition (SVD) which exploits the channel state information (CSI) of all the users at the base station (BS) and only an individual user’s CSI at the mobile station (MS). Specifically, in this contribution, we investigate the performance of multi-user MIMO cellular systems in frequency-selective channels from a transmitter signal processing perspective, where multiple access interference (MAI) is the dominant channel impairment. In particular, the effects of three types of delay spread distributions on MUTP assisted MIMO SDMA systems pertaining to the Long Term Evolution (LTE) channel model are analyzed. The simulation results demonstrate that MUTP can perfectly eliminate MAI in addition to obviating the need for complex multi-user detectors (MUDs) both at the BS and MS. Further, SVD-based MUTP results in better achievable symbol error rate (SER) compared to popularly known precoding schemes such as block diagonalization (BD), dirty paper coding (DPC), Tomlinson–Harashima precoding (THP) and geometric mean decomposition (GMD). Furthermore, when turbo coding is invoked, coded SVD aided MUTP results in better achievable SER than an uncoded system.  相似文献   

11.
This paper investigates the secure transmission for simultaneous wireless information and power transfer (SWIPT) in the cell-free massive multiple-input multiple-output (MIMO) system. To develop green communication, legitimate users harvest energy by the hybrid time switching (TS) and power splitting (PS) strategy in the downlink phase, and the harvested energy can provide power to send uplink pilot sequences for the next time slot. By in-built batteries, the active eavesdropper can send the same pilots with the wiretapped user, which results in undesirable correlations between the channel estimates. Under these scenarios, we derive the closed-form expressions of average harvested energy and achievable rates, and propose an iterative power control (PC) scheme based on max–min fairness algorithm with energy and secrecy constraints (MMF-ESC). This scheme can ensure the uniform good services for all users preserving the distributed architecture advantage of cell-free networks, while meeting the requirements of energy harvested by legitimate users and network security against active eavesdroppers. Besides, continuous approximation, bisection and path tracking are jointly applied to cope with the high-complexity and non-convex optimization. Numerical results demonstrate that MMF-ESC PC scheme can effectively increase the achievable rate and the average harvested energy of each user, and decrease the eavesdropping rate below the threshold. Moreover, the results also reveal that PS strategy is superior in harvesting energy in terms of more stringent network requirements for average achievable rates or security.  相似文献   

12.
In this paper, we investigate the energy efficiency (EE) performance of non-orthogonal multiple access (NOMA) enabled full-duplex (FD) coordinated direct and relay transmission (CDRT) system (i.e., NOMA-FD-CDRT system). Firstly, we consider a two-user scenario, where the base station (BS) can directly communicate with the near user, while it requires the help of a dedicated FD relay node to communicate with the far user. In the second part, we consider that there are two near users and two far users in the system. To improve the EE, we consider integrating the simultaneous wireless information and power transfer (SWIPT) technique at the FD relay. We formulate an analytical expression for the overall EE of the SWIPT-assisted NOMA-FD-CDRT system. We determine optimal power allocation (OPA) for the downlink users at the BS that maximizes the EE. An iterative algorithm based on Dinkelbach method is proposed to determine the OPA vector. With the help of detailed numerical and simulation investigations, it is demonstrated that the proposed OPA can provide significant enhancement of EE of the considered SWIPT-assisted NOMA-FD-CDRT system.  相似文献   

13.
A multi-user interference estimation and cancellation technique is proposed for direct-detection fiber-optic code division multiple-access communication systems employing pulse-position modulation. In addition, Manchester codes are used in signaling the transmitted data to further improve the bit-error rate (BER). The multi-user interference of any user is estimated with the help of properties of modified prime code sequences. The estimated interference is canceled out from the received signal after the photo-detection process. We have used PIN photo-detector in our proposed system. An upper bound on the BER for the proposed system is derived and compared with a lower bound on the BER for the system without cancellation. In the presence of multiple users interference (MUI) and the Poisson shot noise model, our results clearly indicate that the performance, in terms of the BER, of the proposed system is significantly improved compared with that of the system without cancellation. The effect of thermal, dark current and surface leakage noise is insignificant compared to MUI and thus will not be considered in our calculation of BER.  相似文献   

14.
浅海环境中的时间反转多用户水声通信   总被引:1,自引:0,他引:1       下载免费PDF全文
张涵  孙炳文  郭圣明 《应用声学》2009,28(3):214-219
在无线电通信中,多用户通信可以采用时分多址(TDMA)、频分多址(FDMA)或者码分多址(CDMA)技术来实现,在水声通信中,信道的多途传播特性带来的空间差异,提供了另外的多用户通信手段。时间反转(或相位共轭)技术,能够实现对空间中指定点的聚焦接收和多途压缩,它为空间位置不同的多个用户提供了相互独立的通信通道,能够很好地克服用户之间的同道干扰(CI)。本文在垂直阵接收的基础上,利用时间反转技术来实现不同用户在同一信道中的同时通信,结合带锁相环的自适应判决反馈均衡技术来消除残余的多途码间干扰,并进行了初步的海上试验,实现了两个不同深度上用户的同时通信。  相似文献   

15.
In this paper, single-carrier frequency domain adaptive antenna array (SC-FDAAA) for the uplink multi-user multiple-input multiple-output (MIMO) transmission in a cellular system is studied. By employing AAA weight control in frequency domain, the base station (BS) can suppress the multi-user interference (MUI) and therefore realize multi-user SC transmission. In addition, channel frequency selectivity can be exploited to obtain the frequency diversity (or the multi-path diversity). The frequency domain signal-to-interference-plus-noise-ratio (SINR) after weight control is investigated and the computational complexity of the proposed receiver is analyzed. In numerical simulations, cellular structure using the frequency reuse is assumed, and the effect of co-channel interference (CCI) is considered. The performance of the SC uplink multi-user MIMO transmission using SC-FDAAA is testified and compared with other multi-user detection schemes. The link capacity (maximum number of users/cell) and cellular link capacity (link capacity/frequency reuse factor) are also be evaluated.  相似文献   

16.
We have studied massive MIMO hybrid beamforming (HBF) for millimeter-wave (mmWave) communications, where the transceivers only have a few radio frequency chain (RFC) numbers compared to the number of antenna elements. We propose a hybrid beamforming design to improve the system’s spectral, hardware, and computational efficiencies, where finding the precoding and combining matrices are formulated as optimization problems with practical constraints. The series of analog phase shifters creates a unit modulus constraint, making this problem non-convex and subsequently incurring unaffordable computational complexity. Advanced deep reinforcement learning techniques effectively handle non-convex problems in many domains; therefore, we have transformed this non-convex hybrid beamforming optimization problem using a reinforcement learning framework. These frameworks are solved using advanced deep reinforcement learning techniques implemented with experience replay schemes to maximize the spectral and learning efficiencies in highly uncertain wireless environments. We developed a twin-delayed deep deterministic (TD3) policy gradient-based hybrid beamforming scheme to overcome Q-learning’s substantial overestimation. We assumed a complete channel state information (CSI) to design our beamformers and then challenged this assumption by proposing a deep reinforcement learning-based channel estimation method. We reduced hybrid beamforming complexity using soft target double deep Q-learning to exploit mmWave channel sparsity. This method allowed us to construct the analog precoder by selecting channel dominant paths. We have demonstrated that the proposed approaches improve the system’s spectral and learning efficiencies compared to prior studies. We have also demonstrated that deep reinforcement learning is a versatile technique that can unleash the power of massive MIMO hybrid beamforming in mmWave systems for next-generation wireless communication.  相似文献   

17.
With the rapid development of the Internet of Things (IoT) and the increasing number of wireless nodes, the problems of scare spectrum and energy supply of nodes have become main issues. To achieve green IoT techniques and resolve the challenge of wireless power supply, wireless-powered backscatter communication as a promising transmission paradigm has been concerned by many scholars. In wireless-powered backscatter communication networks, the passive backscatter nodes can harvest the ambient radio frequency signals for the devices’ wireless charging and also reflect some information signals to the information receiver in a low-power-consumption way. To balance the relationship between the amount of energy harvesting and the amount of information rate, resource allocation is a key technique in wireless-powered backscatter communication networks. However, most of the current resource allocation algorithms assume available perfect channel state information and limited spectrum resource, it is impractical for actual backscatter systems due to the impact of channel delays, the nonlinearity of hardware circuits and quantization errors that may increase the possibility of outage probability. To this end, we investigate a robust resource allocation problem to improve system robustness and spectrum efficiency in a cognitive wireless-powered backscatter communication network, where secondary transmitters can work at the backscattering transmission mode and the harvest-then-transmit mode by a time division multiple access manner. The total throughput of the secondary users is maximized by jointly optimizing the transmission time, the transmit power, and the reflection coefficients of secondary transmitters under the constraints on the throughput outage probability of the users. To tackle the non-convex problem, we design a robust resource allocation algorithm to obtain the optimal solution by using the proper variable substitution method and Lagrange dual theory. Simulation results verify the effectiveness of the proposed algorithm in terms of lower outage probabilities.  相似文献   

18.
In this paper, we investigate a decode-and-forward relay-assisted cooperative non-orthogonal multiple access (NOMA) scheme, where the relay implements a time-switching (TS) based energy harvesting (EH). The impacts of the imperfect channel state information (CSI), inter-cell interference (ICI) and imperfect successive interference cancellation (SIC) are taken into account. We derive the end-to-end bit error rate (BER) expressions under imperfect CSI and ICI for both users. The effect of the EH parameters under the imperfect CSI on users’ BER performance is also examined. Furthermore, we discuss the impact of ICI on BER performance. Computer simulations are used for numerical analysis validation. The results reveal that the CSI deterioration reduces the SIC performance in each node despite the increase in EH parameters and causes an error floor at the higher signal-to-noise ratio (SNR). Furthermore, the BER performance of the users increases by increasing the EH parameters. Also, the ICI affects the SIC and degrades the BER of users.  相似文献   

19.
In this paper, we focus on the secrecy rate maximization problem in intelligent reflecting surface (IRS)-assisted cognitive radio (CR) networks. In order to improve the security, there is a common scheme to add artificial noise (AN) to the transmitted signal, which is also applied in this paper. Further, in CR networks, the secondary users always cannot obtain accurate channel state information (CSI) about the primary user and eavesdropper. By taking jointly design for the IRS phase shift matrix, the transmitted beamforming of the secondary base station (BS), and the covariance matrix of AN, our objective is to maximize the minimal secrecy rate of all secondary users. Due to the serious coupling among the designed variables, it cannot be solved by conventional methods. We propose an alternating optimization (AO) algorithm. In simulation results, we apply primary users and secondary users randomly distributed in the communication area, which numerically demonstrate the superiority of our proposed scheme.  相似文献   

20.
郭业才  张宁  吴礼福  孙心宇 《物理学报》2015,64(17):174303-174303
为了解决麦克风阵列通道失配时波束形成算法的稳健性问题, 提出一种基于自适应加权约束最小二乘法的麦克风阵列稳健频率不变波束形成算法. 该算法在分析无通道失配和通道失配时阵列模型特点基础上, 深入研究了通道失配时约束最小二乘频率不变波束形成算法存在的问题及其产生的原因; 将麦克风特性的概率密度函数作为稳健因子加入到约束最小二乘频率不变波束形成算法后, 其频率不变性的稳健性得到了一定的提高, 但稳健性仍较差. 为了进一步提高约束最小二乘法频率不变波束形成算法的稳键性, 通过定义代价函数中控制频率不变性的动态加权系数来调节旁瓣频谱能量, 大大提高了频率不变波束形成算法的稳键性, 将频率不变的频带范围内同一到达角度上不同频率所形成的阵列响应的最大值与最小值之比定义为波动误差, 并作为比较本文算法与约束最小二乘稳健波束形成算法和minmax稳健波束形成算法在通道失配时频率不变性稳键性的评价指标. 算法实例验证结果表明, 在麦克风阵列通道失配时, 本文算法的波动误差最小、频率不变波束形成稳健性最好, 而且适用于任意结构的阵列.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号