首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 655 毫秒
1.
This paper starts with a self-contained discussion of the so-called Akulov–Volkov action SAV\mathcal{S}_{\mathrm{AV}}, which is traditionally taken to be the leading-order action of the Goldstino field. Explicit expressions for SAV\mathcal{S}_{\mathrm{AV}} and its chiral version SAVch\mathcal{S}_{\mathrm{AV}}^{\mathrm{ch}} are presented. We then turn to the issue on how these actions are related to the leading-order action SNL\mathcal{S}_{\mathrm{NL}} proposed in the newly proposed constrained superfield formalism. We show that SNL\mathcal{S}_{\mathrm{NL}} may yield SAV/SAVch\mathcal{S}_{\mathrm {AV}}/\mathcal{S}_{\mathrm{AV}}^{\mathrm{ch}} or a totally different action SKS\mathcal{S}_{\mathrm{KS}}, depending on how the auxiliary field in the former is integrated out. However, SKS\mathcal{S}_{\mathrm{KS}} and SAV/SAVch\mathcal{S}_{\mathrm {AV}}/\mathcal{S}_{\mathrm{AV}}^{\mathrm{ch}} always yield the same S-matrix elements, as one would have expected from general considerations in quantum field theory.  相似文献   

2.
A large-deviation principle (LDP) at level 1 for random means of the type $$M_n \equiv \frac{1}{n}\sum\limits_{j = 0}^{n - 1} {Z_j Z_{j + 1} ,{\text{ }}n = 1,2,...}$$ is established. The random process {Z n} n≥0 is given by Z n = Φ(X n) + ξ n , n = 0, 1, 2,..., where {X n} n≥0 and {ξ n} n≥0 are independent random sequences: the former is a stationary process defined by X n = T n(X 0), X 0 is uniformly distributed on the circle S 1, T: S 1S 1 is a continuous, uniquely ergodic transformation preserving the Lebesgue measure on S 1, and {ξn} n≥0 is a random sequence of independent and identically distributed random variables on S 1; Φ is a continuous real function. The LDP at level 1 for the means M n is obtained by using the level 2 LDP for the Markov process {V n = (X n, ξ n , ξ n+1)} n≥0 and the contraction principle. For establishing this level 2 LDP, one can consider a more general setting: T: [0, 1) → [0, 1) is a measure-preserving Lebesgue measure, $\Phi :\left[ {0,\left. 1 \right)} \right. \to \mathbb{R}$ is a real measurable function, and ξ n are independent and identically distributed random variables on $\mathbb{R}$ (for instance, they could have a Gaussian distribution with mean zero and variance σ2). The analogous result for the case of autocovariance of order k is also true.  相似文献   

3.
We have determined the thermoelectric power ? of the high ionic conductivity glass (AgI)0.79(Ag2O.B2O3)0.21; ? is negative throughout the investigated T range, 320–500 K. The heat of transport of the mobile Ag+, QAg, taken as the slope of the straight line fitting ? versus 1/T, is quite lower than the activation energy obtained from conductivity data, viz. QAg = 2.81 kcal/mole-1 < Eact = 4.34 kcalmole-1. To circumvent this discrepancy, the analysis of the experimental data is carried out as follows: (i) it is supposed that QAg = Eact in agreement with the free ion theory for solid electrolytes; (ii) the vibrational part of the silver ion entropy, S(Ag+, vib), is assumed to be equal to the entropy of silver, S(Ag); (iii) on the ground of a structural model for this kind of glasses, the ideal configurational entropy of the mobile Ag+, S(Ag+, conf)id, is evaluated through a statistical approach. The ideal ionic entropy is defined as S(Ag+)id = {S(Ag+, vib) + S(Ag+, conf)id}; (iv) the difference {S(Ag+)exp - S(Ag+)id} is viewed as an excess entropy and is described according to the classical model of the regular solutions.  相似文献   

4.
For the two-dimensional Schrödinger equation $$[ - \Delta + v(x)]\psi = E\psi , x \in \mathbb{R}^2 , E = E_{fixed} > 0 (*)$$ at a fixed positive energy with a fast decaying at infinity potentialv(x) dispersion relations on the scattering data are given. Under “small norm” assumption using these dispersion relations we give (without a complete proof of sufficiency) a characterization of scattering data for the potentials from the Schwartz classS=C (∞) (?2). For the potentials with zero scattering amplitude at a fixed energyE fixed (transparent potentials) we give a complete proof of this characterization. As a consequence we construct a family (parametrized by a function of one variable) of two-dimensional spherically-symmetric real potentials from the Schwartz classS transparent at a given energy. For the two-dimensional case (without assumption that the potential is small) we show that there are no nonzero real exponentially decreasing, at infinity, potentials transparent at a fixed energy. For any dimension greater or equal to 1 we prove that there are no nonzero real potentials with zero forward scattering amplitude at an energy interval. We show that KdV-type equations in dimension 2+1 related with the scattering problem (*) (the Novikov-Veselov equations) do not preserve, in general, these dispersion relations starting from the second one. As a corollary these equations do not preserve, in general, the decay rate faster than |x|?3 for initial data from the Schwartz class.  相似文献   

5.
The general theory of inhomogeneous mean-field systems of Raggio and Werner provides a variational expression for the (almost sure) limiting free energy density of the Hopfield model $$H_{N,p}^{\{ \xi \} } (S) = - \frac{1}{{2N}}\sum\limits_{i,j = 1}^N {\sum\limits_{\mu = 1}^N {\xi _i^\mu \xi _j^\mu S_i S_j } } $$ for Ising spinsS i andp random patterns ξμ=(ξ 1 μ 2 μ ,...,ξ N μ ) under the assumption that $$\mathop {\lim }\limits_{N \to \gamma } N^{ - 1} \sum\limits_{i = 1}^N {\delta _{\xi _i } = \lambda ,} \xi _i = (\xi _i^1 ,\xi _i^2 ,...,\xi _i^p )$$ exists (almost surely) in the space of probability measures overp copies of {?1, 1}. Including an “external field” term ?ξ μ p hμμξ i=1 N ξ i μ Si, we give a number of general properties of the free-energy density and compute it for (a)p=2 in general and (b)p arbitrary when λ is uniform and at most the two componentsh μ1 andh μ2 are nonzero, obtaining the (almost sure) formula $$f(\beta ,h) = \tfrac{1}{2}f^{ew} (\beta ,h^{\mu _1 } + h^{\mu _2 } ) + \tfrac{1}{2}f^{ew} (\beta ,h^{\mu _1 } - h^{\mu _2 } )$$ for the free energy, wheref cw denotes the limiting free energy density of the Curie-Weiss model with unit interaction constant. In both cases, we obtain explicit formulas for the limiting (almost sure) values of the so-called overlap parameters $$m_N^\mu (\beta ,h) = N^{ - 1} \sum\limits_{i = 1}^N {\xi _i^\mu \left\langle {S_i } \right\rangle } $$ in terms of the Curie-Weiss magnetizations. For the general i.i.d. case with Prob {ξ i μ =±1}=(1/2)±?, we obtain the lower bound 1+4?2(p?1) for the temperatureT c separating the trivial free regime where the overlap vector is zero from the nontrivial regime where it is nonzero. This lower bound is exact forp=2, or ε=0, or ε=±1/2. Forp=2 we identify an intermediate temperature region between T*=1?4?2 and Tc=1+4?2 where the overlap vector is homogeneous (i.e., all its components are equal) and nonzero.T * marks the transition to the nonhomogeneous regime where the components of the overlap vector are distinct. We conjecture that the homogeneous nonzero regime exists forp≥3 and that T*=max{1?4?2(p?1),0}.  相似文献   

6.
Iodine doped single crystals of CdS were grown from the vapor phase. High temperature Hall effect measurements for the crystals equilibrated with Cd and S2 vapors at temperatures between 700 and 1000°C gave the free electron concentration as a function of pCd or pS2 and temperature. The results can be explained on the basis of a model in which the CdS is saturated with iodine at low pCd (=high pS2) but unsaturated at high pCd.The solubility of iodine in CdS is given by ct=1·73×1022pS2?1/8 exp (?1·045 eV/kT) cm?3 atm?1/8=4·62×1019pCd1/4 exp (?0·195 eV/kT) cm?3 atm1/4The formation of pairs (ISVCd)′ from IS· and VCd″ is governed by the equilibrium constant KP(I, V)=4 exp (≤1·1 eV/kT)If Cd diffusion occurs primarily by free vacancies, the Cd* tracer self diffusion leads to a vacancy mobility of (1·2±0·5)×10?5 cm2 sec?1 at 900°C, in agreement with results reported by Woodbury [12], but (7±3) times larger than reported by Kumar and Kroger [10].  相似文献   

7.
We present a novel method, based on the single particle Schroedinger equation, to determine the central potential (mean-field) directly from the single particle matter density and its first and second derivatives. As an example, we consider the experimental data for the charge density difference between the isotones 206Pb–205Tl, deduced by phase shift analysis of elastic electron scattering cross-section measurements and corresponds to the shell model 3s1/2 proton orbit, and determine the corresponding single particle potential. We also present results of least-square fits to parametrized single particle potentials. The 3s1/2 wave functions of the determined potentials reproduce fairly well the experimental data within the quoted errors. More accurate experimental data, with uncertainty smaller by a factor of two or more, may answer the question how well can the data be reproduced by a calculated 3s1/2 wave function.  相似文献   

8.
We investigate Lifshits-tail behaviour of the integrated density of states for a wide class of Schrödinger operators with positive random potentials. The setting includes alloy-type and Poissonian random potentials. The considered (single-site) impurity potentials f: ?d→[0,∞[ decay at infinity in an anisotropic way, for example, \(f(x_{1},x_{2})\sim (|x_{1}|^{\alpha_{1}}+|x_{2}|^{\alpha_{2}})^{-1}\) as |(x1,x2)|→∞. As is expected from the isotropic situation, there is a so-called quantum regime with Lifshits exponent d/2 if both α1 and α2 are big enough, and there is a so-called classical regime with Lifshits exponent depending on α1 and α2 if both are small. In addition to this we find two new regimes where the Lifshits exponent exhibits a mixture of quantum and classical behaviour. Moreover, the transition lines between these regimes depend in a nontrivial way on α1 and α2 simultaneously.  相似文献   

9.
10.
11.
Local energy-dependent potentials have been constructed phase equivalent to members of a family of phase-equivalent separable two-nucleon potentials in the1 S 0-state. It has been shown that these potentials obey the known off-shell constraints in the1 S 0-state and can therefore not be regarded as unrealistic in this sense. They have the same shape as the energy-independent local Kermode potentials. However we also find that the off-shell behaviour of a separable1 S 0 potential and its local equivalent can differ considerably.  相似文献   

12.
Raman scattering on single crystals of Eu3S4 does not show the allowed q=o phonon modes in the cubic phase and exhibits no new modes in the distorted low temperature phase (T<186 K). Above the Curie temperature Tc=3.8 K the scattering is dominated by a spin-disorder induced one-phonon density of states allowing for the observation of the zone boundary phonon breathing mode of the S2?ions. This mode does not show any anomaly near the charge order -disorder phase transition Tt=186 K. Temperature tunable spin fluctuations associated with the temperature activated Eu2+→Eu3+ electron hopping are detected in the scattering intensity, superimposed on the usual thermal spin disorder.  相似文献   

13.
Classical stability of Einstein spaces Sd1 ×?×Sdn(dj ? 2) against all fluctuations is investigated in euclidean gravity with a cosmological constant. It is shown that Sd is classically stable, while Sd1 ×?× Sdn(n ? 2) is classically unstable. As a generalization of this analysis it is proved that a compact Einstein space B1 ×?× Bn(n ? 2) which is a direct product of each Einstein space is classically unstable. Non-Einstein spaces M2 × S4 (M2 × S2 × S2) are also considered in six- dimensional Einstein-Maxwell theory and are shown to be classically stable (unstable).  相似文献   

14.
Single electron capture and single ionization total cross sections in collisions of proton with ethylene are calculated for an energy range 25 keV E 150 keV, using the classical trajectory Monte Carlo method. Multi-center model potentials are employed to represent the interaction of the active electron on each molecular orbital with the C2H4+_{4}^{+} core. The results are compared with experimental results for single electron capture.  相似文献   

15.
Transport parameters and optical properties of Bi2Te3?xSx single-crystals with x=0–0.18 were studied. With increasing sulphur content the concentration of free current carriers decreases up to x=0.12, due to the interaction of SxTe defects with antisite defects BiTe, and then the p-type conductivity changes to the n-type. The optical gap of Bi2Te3?xSx crystals increases with increasing S content. The obtained results led to the preparation of Bi2Te3-Bi2Te3?xSxpn junction by the heat treatment of p-type Bi2Te3 in S vapours.  相似文献   

16.
17.
In this paper, the author presents the results of measurements of the low-temperature and angular dependences of the ESR spectra of Eu2+ centers in defect Ga2S3 single crystals in the temperature range 8–29 K and for 0–180° orientations of the static magnetic field. The electron structure of impurity 151Eu atoms in Ga2S3:Eu single crystals has been studied by using the ESR method at different doping proportions of Eu atoms. Ga2S3 single crystals were grown from the melt using the Bridgman method. The Eu concentration was determined by atomic absorption analysis and X–ray fluorescence analysis (XRFA). By investigation on the ESR spectra, the author has first determined the values of charge states for Eu, which have turned out to be a Eu2+(4f7) ion with spin S=7/2, g=4.18±0.02 and concentration of the states of Eu N=6.3×1014 cm−3.  相似文献   

18.
A recently proposed separable expansion for the t-matrix for local potentials is extended to the coupled channel of nucleon-nucleon interactions. The simple method yields a rather convergent separable expansion, with simple form factors, and the requirements of two particle unitarity and time reversal symmetry are maintained for approximations of any rank. The method is illustrated for the simplified Reid soft-core potential in the 3S1-3D1 channel, and the results compared with a recent calculation of Pieper.  相似文献   

19.
The unique design of the PHENIX detector at the Relativistic Heavy-Ion Collider allows one to detect neutral and charged particles produced in high-energy collisions of heavy ions. This circumstance made it possible to measure many-particle decays of light mesons, such as K S 0 →π0π0, η→π0π?π+, and η→γγ in p + p, d + Au and Au + Au collisions at the energy \(\sqrt {S_{NN} }\) = 200 GeV. The latest results of measuring the differential production cross sections, ratios of particle yields (K S 0 0 and η/π0), and the nuclear modification factors (\(R_{dA}^{K_S }\), R dA η , R AA η ) in a wide range of transverse momenta (from 2 to 12 GeV s?1) are reported.  相似文献   

20.
High temperature plasmas are investigated on the basis of quantum theory. A new method for the calculation of the thermodynamic properties is developed. According to the method of Morita effective potentials are introduced. They permit the evaluation of the partition function with the well-known formalism of classical statistical mechanics. The first corrections added to Debye's limiting law of the free energy are expressed by the two particle Slater sum S2(r). A Bloch equation for S2(r) is derived and is solved in the Fourier representation by a development according to the interaction parameter ζ = e2/kTλ, λ being the thermal wavelength. The effects of symmetry are taken into account. The free energy is calculated explicitely up to the order of ζ2. In the case of small concentrations our results agrees with that derived by Trubnikow and Elesin. Effects of symmetry neglected, up to the order of ζ2 the formula of DeWitt is obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号