首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The computational technique is developed in order to provide the scale capturing for numerical simulation of the thermal processes. The thermal front motion and gas flow dynamics as well as the rate of particle growth during the Carbon Combustion Synthesis of Oxides (CCSO) were predicted using the numerical simulation. In CCSO the exothermic oxidation of carbon nanoparticles generates a self-sustained thermal reaction front that propagates through the solid reactant mixture converting it to the desired complex oxides. The combusted carbon is emitted from the sample as carbon dioxide and its high rate of release increases the product porosity and friability. It was shown that the complicated finger front instability can be developed during the carbon combustion synthesis. This phenomenon results from a vortex gas flow in the reaction zone fed by the carbon dioxide co-flow and oxygen counter-flow filtration.  相似文献   

2.
Ensuring robust ignition is critical for the operability of aeronautical gas-turbine combustors. For ignition to be successful, an important aspect is the ability of the hot gas generated by the spark discharge to initiate combustion reactions, leading to the formation of a self-sustained ignition kernel. This study focuses on this phenomena by performing simulations of kernel ignition in a crossflow configuration that was characterized experimentally. First, inert simulations are performed to identify numerical parameters correctly reproducing the kernel ejection from the ignition cavity, which is here modeled as a pulsed jet. In particular, the kernel diameter and the transit time of the kernel to the reacting mixture are matched with measurements. Considering stochastic perturbations of the ejection velocity of the ignition kernel, the variability of the kernel transit time is also reproduced by the simulations. Subsequently, simulations of a series of ignition sequences are performed with varying equivalence ratio of the fuel-air mixture in the crossflow. The numerical results are shown to reproduce the ignition failure that occurs for the leanest equivalence ratio (?=0.6). For higher equivalence ratios, the simulations are shown to capture the sensitivity of the ignition to the equivalence ratio, and the kernel successfully transitions into a propagating flame. Significant stochastic dispersion of the ignition strength is observed, which relates to the variability of the transit time of the kernel to the reactive mixture. An analysis of the structure of the ignition kernel also highlights the transition towards a self-propagating flame for successful ignition conditions.  相似文献   

3.
Ignition and combustion of a falling, single sodium droplet   总被引:1,自引:0,他引:1  
Ignition and combustion of a single sodium droplet has been studied experimentally, by use of a falling droplet. It is found that the ignition delay time increases first gradually and then rapidly, with decreasing initial temperature and/or oxygen concentration, and reaches the limit of ignitability, because of the suppression of surface reaction in the ignition stage. It is also found that with decreasing droplet diameter, the ignition delay time first decreases gradually, because of the decrease in the droplet mass to be heated, and then increases steeply, because of the enhancement of heat loss from the droplet surface. As for the effect of the relative speed, it is found that the ignition delay time increases with increasing relative speed, because of the enhanced heat loss. Experimental comparisons with the analytical results have also been conducted to elucidate dominant parameters, and it is confirmed that a set of comprehensive parameters in the literature can be useful in correlating dominant parameters that influence the ignition delay and/or the limit of ignitability. Furthermore, the analysis has been extended to determine the critical size for the ignition and that for the minimum ignition delay time. Combustion behavior after the ignition has also been examined, and it is found that d2-law can hold for the sodium droplet combustion. In addition, it is found that the burning rate-constant without forced convection has nearly the same value as those for usual hydrocarbon droplets, while the sodium combustion in air is quite similar to that of the usual hydrocarbon fuel in an oxidizer-rich environment.  相似文献   

4.
The hetero-/homogeneous combustion of hydrogen/air mixtures over platinum was investigated experimentally and numerically in a channel-flow configuration at fuel-rich equivalence ratios ranging from 2 to 7, pressures up to 5 bar and wall temperatures 760–1200 K. Experiments involved in situ one-dimensional Raman measurements of major gas-phase species concentrations over the catalyst boundary layer and planar laser induced fluorescence (LIF) of the OH radical, while simulations included an elliptic 2-D model with detailed heterogeneous and homogeneous reaction mechanisms. The employed reaction schemes reproduced the measured catalytic reactant consumption, the onset of homogeneous ignition, and the post-ignition flame shapes at all examined conditions. Although below a critical pressure, which depended on temperature, the intrinsic gas-phase kinetics of hydrogen dictated lower reactivity for the fuel-rich stoichiometries when compared to fuel-lean ones, homogeneous ignition was still more favorable for the rich stoichiometries due to the lower molecular transport of the deficient oxygen reactant that resulted in modest catalytic reactant consumption over the gaseous induction zone. Above the critical pressure, the intrinsic gaseous hydrogen kinetics yielded higher reactivity for the rich stoichiometries, which resulted in vigorous gaseous combustion at pressures up to 5 bar, in contrast to lean stoichiometry studies whereby homogeneous combustion was altogether suppressed above 3 bar. Computations at fuel-rich stoichiometries in practical channel geometries indicated that homogeneous combustion was not of concern for reactor thermal management, since the larger than unity Lewis number of the deficient oxygen reactant confined the flames to the core of the channel, away from the solid walls.  相似文献   

5.
Phenomena such as flame propagation, flame/spray interaction and flame stabilization during the transient ignition process in a cryogenic model rocket combustor are investigated on sub-millisecond time scale. Diagnostic techniques developed to characterize the stationary spray flame are applied to investigate the transient evolution of the LOX-spray and the flame front during the ignition process. Ignition is initiated by focusing a pulsed laser into the combustion chamber. Thus, ignition time as well as the position of ignition is well defined. This and the exact control of the delay between ignition and detection time allowed the observation of the evolution of the flame front. The distribution of the liquid oxygen phase and the velocity of LOX droplets and ligaments are determined by light sheet techniques using a double-pulsed laser system. Simultaneously the position of the flame front is measured by recording the spontaneous emission of the OH-radical. By varying the delay timet between ignition and detection in a series of test runs, the transient ignition phenomena has been investigated in the interval from 0 to 5 ms after ignition.  相似文献   

6.
The influence of a circular hot-spot on the thermal stability of a thin layer of exothermically reacting gas is considered. A hot-spot of this kind would be produced by a laser beam emerging from an optical fibre and impinging on a solid bounding surface from the gas side. The temperature of the hot-spot is not constant across a diameter but decreases radially. The effect of such radial variation on the critical conditions for ignition has been evaluated.  相似文献   

7.
The burning and sooting behaviors of isolated fuel droplets for ethanol and n-decane are examined in high concentration of the ambient carbon dioxide under microgravity. A quartz fiber with the diameter of 50 μm maintains the droplet in the center of the combustion chamber and the range in the initial droplet diameter is from 0.30 to 0.80 mm. The ambience consists of oxygen, nitrogen and carbon dioxide. The concentration of oxygen is 21% in volume, and that of carbon dioxide is varied from 0% to 60% in volume. Detail measurements of the projected image of the droplet are conducted by using a high speed video camera and the effective droplet diameter squared are calculated from the surface area of the rotating body of the projected object. From evolutions of the droplet diameter squared, the instantaneous burning rates are calculated. Time history of the instantaneous burning rate clearly represents the droplet combustion events, such as the initial thermal expansion, ignition and following combustion. The instantaneous burning rate for n-decane shows an increasing trend during combustion, while that for non-sooting ethanol remains almost constant or shows a decreasing trend. A slight stepwise increase in the instantaneous burning rate is observed for larger n-decane droplets in air, which may be attributed to soot accumulation. However, this behavior of the burning rate disappears in higher concentration of carbon dioxide. Direct observation of the droplet flame indicates suppression of soot production in higher concentration of carbon dioxide and the suppression is enhanced for smaller droplet.  相似文献   

8.
《Physics letters. A》2006,356(1):72-78
We identify relevant parameter regimes in which aneutronic fuels can undergo fusion ignition in hot-ion degenerate plasma. Because of relativistic effects and partial degeneracy, the self-sustained burning regime is considerably larger than previously calculated. Inverse bremsstrahlung plays a major role in containing the reactor energy. We solve the radiation transfer equation and obtain the contribution to the heat conductivity from inverse bremsstrahlung.  相似文献   

9.
O2/H2O combustion, as a new evolution of oxy-fuel combustion, has gradually gained more attention recently for carbon capture in a coal-fired power plant. The physical and chemical properties of steam e.g. reactivity, thermal capacity, diffusivity, can affect the coal combustion process. In this work, the ignition and volatile combustion characteristics of a single lignite particle were first investigated in a fluidized bed combustor under O2/H2O atmosphere. The flame and particle temperatures were measured by a calibrated two-color pyrometry and pre-buried thermocouple, respectively. Results indicated that the volatile flame became smaller and brighter as the oxygen concentration increased. The ignition delay time of particle in dense phase was shorter than that in dilute phase due to its higher heat transfer coefficient. Also, the volatile flame was completely separated from particles (defined as off-flame) in dense phase while the flame lay on the particle surface (defined as on-flame) in dilute phase. The self-heating of fuel particles by on-flame in dilute phase was more obvious than that in dense phase, leading to earlier char combustion. At low oxygen concentration, the flame in the H2O atmosphere was darker than that in the N2 atmosphere because the heat capacity of H2O is higher than that of N2. With the increase of oxygen concentration, the flame temperature in the O2/H2O atmosphere was dramatically enhanced rather than that in the O2/N2 atmosphere, where the diffusion rate of oxygen in O2/N2 atmosphere became the dominant factor.  相似文献   

10.
Considering the diffusion reaction at solid interfaces, the ignition temperature of compounds fabricated by self-propagating high-temperature synthesis (SHS) is modelled with the help of size-dependent activation energy. As reactant size decreases, ignition temperature also decreases. This is because of increased contact areas between the reactants and the lowered diffusion barrier, both of which must be calculated specifically for reactants in nanoscale. The model predictions and experimental results are consistent for some metallic compounds.  相似文献   

11.
Localised forced ignition of globally stoichiometric stratified mixtures (i.e. < φ > =1.0) has been analysed here based on direct numerical simulations for different initial values of velocity and equivalence ratio fluctuations (i.e. u′ and φ′), and the Taylor micro-scale lφ of equivalence ratio φ variation. The localised ignition is accounted for by a source term in the energy transport equation which deposits energy over a stipulated time interval. It has been found that combustion takes place predominantly under premixed mode in the case of successful ignition. The initial values of φ′ and lφ have been found to have significant effects on the extent of burning of stratified mixtures following localised ignition. It has been found that an increase in u′(φ′) has adverse effects on the burned gas mass, whereas the effects of lφ on the extent of burning are non-monotonic and dependent on φ′. Detailed physical explanations have been provided for the observed u′, φ′ and lφ dependences on the extent of burning in stratified mixtures.  相似文献   

12.
弭光宝  黄旭  曹京霞  王宝  曹春晓 《物理学报》2016,65(5):56103-056103
采用摩擦氧浓度实验方法, 结合原位观察、扫描电镜、能谱仪和X-射线衍射分析, 系统研究Ti-V-Cr 阻燃钛合金燃烧产物的微观组织形貌、燃烧反应过程的合金元素分布规律及微观机理. 结果表明: Ti-V-Cr 阻燃钛合金燃烧过程发出闪亮耀眼的白光, 具有典型金属燃烧的火焰特征. 燃烧产物主要有TiO2, V2O5和Cr2O3三种氧化物, 该混合氧化物以分散颗粒和致密连续体存在. 分散颗粒为规则的球形; 致密连续燃烧产物的微观组织具有分区特征, 从合金基体至燃烧表面依次为过渡区、热影响区、熔凝区和燃烧区. 其中, 过渡区存在一些微小的颗粒状凸起, 且有一定方向性; 热影响区中形成大量V基固溶体相和少量的Ti基固溶体相, V基固溶体相上存在Ti的含量远高于基体的针状析出物; 熔凝区中, 大量的Ti基固溶体中存在少量的V基固溶体; 燃烧区主要为Ti, V和Cr的氧化物混合物. 热影响区的V基固溶体相降低了Ti元素向熔凝区的迁移速率, 减慢了燃烧区Ti与O的优先反应; 燃烧区形成的TiO2, V2O5和Cr2O3混合氧化物和熔凝区O在Ti中大量固溶共同终止了O向合金基体的继续扩散, 从而使Ti-V-Cr阻燃钛合金表现出优异的阻燃功能性.  相似文献   

13.
高性能自持燃烧的氘氚等离子体   总被引:4,自引:1,他引:3       下载免费PDF全文
在等离子体密度分布一定的情况下,从电子、离子的能量输运方程出发,对常规剪切和中心负剪切位形下高性能自持燃烧的氘氚等离子体进行了研究.常规剪切下采用与能量约束改善因子H有关的Bohm热传导系数,中心负剪切下采用一个与磁剪切有关的Bohm-gyro-Bohm混合型的热传导系数,并考虑了α粒子反常扩散和动态反馈加热对氘氚自持燃烧的影响.研究结果表明,常规剪切下当H≥3时,才有较大的能量输出,当H接近4时无须动态反馈加热氘氚就能获得自持燃烧;在中心负剪切位形下,等离子体的运行性能更高,有更高的能量输出,一旦氘氚达 关键词: 高性能等离子体 氘氚自持燃烧 中心负剪切  相似文献   

14.
Combustion of lunar regolith mixed with energetic additives is a potential method for production of construction materials in future moon missions. Recently, self-sustained combustion in the mixtures of JSC-1A lunar regolith and magnesium has been demonstrated. However, the concentration of magnesium in those mixtures was as high as 26 wt%. Note that magnesium must be either transported from Earth or recovered from lunar minerals or used structures. The present paper focuses on the minimization of magnesium content in JSC-1A/Mg mixtures. The mixtures were compacted into pellets and ignited in argon environment. Initial attempts to decrease magnesium concentration resulted in the observations of a spinning combustion wave at 23 wt% Mg. The observed spin combustion involved periodical motion of two counterpropagating hot spots along a helical path on the sample surface. These observations, including features such as formation of a faster hot spot after collision of the counterpropagating spots, confirm theoretical predictions for spin combustion in solid–solid mixtures. High-energy mechanical milling of JSC-1A in a planetary ball mill significantly increased its reactivity and improved combustion of its mixtures with magnesium. Mixtures of the obtained powder (the median diameter of about 3 μm) with 26 wt% Mg exhibit easy ignition and vigorous combustion. The minimum concentration of magnesium required for self-sustained propagation of a planar combustion front is as low as 13 wt%.  相似文献   

15.
This article investigates the effect of steam on the ignition of single particles of solid fuels in a drop tube furnace under air and simulated oxy-fuel conditions. Three solid fuels, all in the size range 125–150 µm, were used in this study; specifically, a low rank sub-bituminous Colombian coal, a low-rank/high-ash sub-bituminous Brazilian coal and a charcoal residue from black acacia. For each solid fuel, particles were burned at a constant drop tube furnace wall temperature of 1475?K, in six different mixtures of O2/N2/CO2/H2O, which allowed simulating dry and wet conventional and oxy-fuel combustion conditions. A high-speed camera was used to record the ignition process and the collected images were treated to characterize the ignition mode (either gas-phase or surface mode) and to calculate the ignition delay times. The Colombian coal particles ignite predominately in the gas-phase for all test conditions, but under simulated oxy-fuel conditions there is a decrease in the occurrence of this ignition mode; the charcoal particles experience surface ignition regardless of the test condition; and the Brazilian coal particles ignite predominately in the gas-phase when combustion occurs in mixtures of O2/N2/H2O, but under simulated oxy-fuel conditions the ignition occurs predominantly on the surface. The ignition delay times for particles that ignited in the gas-phase are smaller than those that ignited on the surface, and generally the simulated oxy-fuel conditions retard the onset of both gas-phase and surface ignition. The addition of steam decreases the gas-phase and surface ignition delay times of the particles of both coals under simulated oxy-fuel conditions, but has a small impact on the gas-phase ignition delay times when the combustion occurs in mixtures of O2/N2/H2O. The steam gasification reaction is likely to be responsible for the steam effect on the ignition delay times through the production of highly flammable species that promote the onset of ignition.  相似文献   

16.

The catalytic ignition of dry carbon monoxide and air in a boundary layer flow over a palladium plate is studied in this paper. The heterogeneous reaction mechanism is modelled with the dissociative adsorption of the molecular oxygen and the non-dissociative adsorption of CO, together with a surface reaction of the Langmuir-Hinshelwood type and the desorption reaction of the adsorbed product, CO2(s). The critical condition for catalytic ignition, represented by the ignition Damköhler number, has been deduced using high activation energy asymptotics of the desorption kinetics of the most efficiently adsorbed reactant, CO(s). Longitudinal heat conduction along the plate has been considered and its influence on the ignition temperature has been evaluated. This influence is rather weak, indicating that the flat plate boundary layer flow configuration is a robust device to determine the critical conditions for catalytic ignition.  相似文献   

17.
We consider the propagation of a combustion front resulting from the gasless combustion of a condensed state fuel. The propagation of the front, essentially a premixed laminar flame, is supported by an exothermic reaction subject to possible heat loss through a competitive endothermic reaction. The dynamics of the endothermic process inducing the heat loss strongly depend on the temperature and the local fuel concentration. Through an analysis based on high activation energy, the steady-state values of the final burnt temperature as well as the burning velocity are obtained, and the control parameters are identified. Using a linear perturbation method, we assess the stability of the propagating front and obtain a condition for oscillatory behaviour. The critical parameter values for the transition from steady to oscillatory burning speeds are identified. The results represent a generalization of those obtained by Matkowsky and Sivashinsky to include the effects of heat loss induced by a competitive endothermic reaction.  相似文献   

18.
19.
This paper considers a simplified model of active combustion in a fluid flow, with the reaction influencing the flow. The model consists of a reaction-diffusion-advection equation coupled with an incompressible Navier-Stokes system under the Boussinesq approximation in an infinite vertical strip. We prove that for certain ignition nonlinearities, including all that are C2, and for any domain width, planar traveling front solutions are nonlinearly and exponentially stable within certain weighted H2 spaces, provided that the Rayleigh number ρ is small enough. The same result holds for bistable nonlinearities in unweighted H2 spaces. We also obtain uniform bounds on the Nusselt number, the bulk burning rate, and the average maximum vertical velocity for chemistries that include bistable and ignition nonlinearities.  相似文献   

20.

Lack of proven means to control ignition impedes practical implementation of homogenous charge compression ignition (HCCI) engines. In the present paper, we investigate if laser-induced excitation of oxygen might aid solution of the ignition control problem in HCCI engines. Simulations by previous researchers showed laser-induced excitation of oxygen enhances ignition in supersonic combustion. Based on this previous research, we extend a chemical kinetic mechanism for propane autoignition to include reactions for two excited oxygen states, O2(a1Δ g ) and O2(b1Σ g +). Simulations examined the effect of each of these excited O2 states upon ignition timing in an HCCI engine. Results indicate that achieving useful control of the combustion process requires substantial conversion of O2 to either of the excited states. At the required level of excitation, the power required for the laser may lower engine efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号