首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
A nulling system for phased array antennas with broad bandwidth and reduced complexity is presented. The system is based on combining the output of an optical beamforming network with an optical transversal filter steered in the angle where a null is desired in a configuration that reduces the number of optoelectronic conversion compared to previous proposals. Preliminary experimental results to show the feasibility of the concept are provided between 2 and 6 GHz, showing null depths of 22, 10 and 19 dB at 2, 5 and 6 GHz, respectively.  相似文献   

2.
《Current Applied Physics》2014,14(4):563-569
We used an electromagnetic microwave cavity sensor for real time measurement of the glycemia in goat-blood for three animals. We could determine the concentration of d-glucose in blood in the range of 90–550 mg/dl at the resonance frequency near 4.76 GHz with a bandwidth of 300 MHz. The change in microwave reflection coefficient S11 (due to the variation of d-glucose concentration in blood) was about 16.33 dB, 23.92 dB, 7.66 dB and resonance frequency shift was about 21.78 MHz, 36.29 MHz, 20.77 MHz, respectively, for the three different samples. The in vitro results show the measured signal-to-noise ratio of about 32 dB, and the minimum detectable signal level of about 0.025 dB/(mg/dl). The results clearly show the sensitivity and usefulness of this microwave sensor for these types of biological investigations. This proposed system provides a unique approach for real contactless glucose monitoring and, it may serve as a bloodless glucometer for the calibration of different glucose levels.  相似文献   

3.
A High-gain Wideband Antenna with Double Fabry-perot Cavities   总被引:1,自引:0,他引:1  
A high-gain wideband antenna, using the electromagnetic resonances of double Fabry-Perot (F-P) cavities, is proposed. The two cavities are excited by a patch antenna placed in the cavities on top of the ground plane. One of the double F-P cavities is formed by a ground plane and a single metallic strips array, and the other consists of the patch and the metallic strips array. The two F-P cavities have different resonance points which yield the frequency bandwidth of 7% between 13.0 and 14 GHz with S11 ≤ 10 dB, meanwhile, in this frequency region high gain is also obtained. Moreover, the center frequency and bandwidth could be adjusted by changing the cavity length. The high-gain wideband antenna was manufactured and measured. The measured VSWR is less than 2 from 13.3 GHz to 15.2 GHz, the measured gain is 13.5 dB at 13.5 GHz. In addition to that, a considerable improvement of 7 dB in terms of gain is obtained when compared to the same antenna without metallic strips.  相似文献   

4.
X-band active beam-scanning leaky-wave antenna arrays, including 1 × 1,1 × 2 and 1 × 4 prototypes, have been demonstrated. These antennas integrated one or several microstrip leaky-wave antenna elements with a single varactor-tuned HEMT VCO as an active source. Measured results on experimental antennas indicate that the beam scanning angle of the 1 × 1 antenna close to 40° can be achieved and the scanning range of 1 × 2 and 1 × 4 antenna arrays are both close to 32°. Furthermore, reflected wave due to the open end of each leaky-wave antenna element has been suppressed by the symmetric configuration of this antenna array and the antenna efficiency increases. When comparing with the measured radiation pattern of the single element antenna, we found that the 1 × 2 and 1 × 4 antenna arrays can effectively suppress the reflected power by more than 5.5 dB and 10.5 dB, respectively, at 10.2GHz. The power gain are more than 2 dB and 3.16 dB higher than the single element antenna with a measured EIRP of 18.67 dBm.  相似文献   

5.
The performance of a widely tunable phase-based beamformer for phased array antennas using a new technique to cross-polarized the carrier and the sideband, in order to allow the phase control by means of a spatial light modulator, is experimentally demonstrated. The technique relies on the combination of single sideband amplitude modulation (SSB) using a Mach-Zehnder modulator (MZM) and birefringence (to cross-polarized the carrier and the sideband). The architecture has the potential of controlling multiple independent beams simultaneously. The beamformer feeds an eight elements array showing an insertion loss and a reset speed of around 12 dB and 70 ms, respectively. Far-field antenna patterns between 7.5 GHz and 8.5 GHz for nine elevation angles within a range of ±20° have been measured showing beam steering capability, amplitude distribution weighting as well as multibeam operation.  相似文献   

6.
彭国民  张永  方进  丘明 《低温与超导》2007,35(6):491-493
一个用于直接广播卫星(DBS)系统的圆极化和单一馈电网络的四单元高温超导微带天线阵,被设计和制造在一个0.5毫米厚的氧化镁衬底上,中心频率是12.2GHz。为了比较,一个天线是采用金膜制造的,另一个是采用超导薄膜钇钡铜氧(YBCO)制造的。为了提高圆极化阵的轴比特性,运用连续旋转的技术。效率、方向性、回波损耗和带宽分别在室温和液氮温度下被测试。采用超导薄膜钇钡铜氧(YBCO)制造的阵表现很好的圆极化特性,并且在温度为77K下时的增益比室温时的金膜天线阵大1.64dB。在谐振频率12.24GHz时回馈损耗为-30.6dB并且总的有效带宽大约为3.52%。这个结果显示当高温超导体用于微带天线阵时,能提高天线阵的效率。  相似文献   

7.
Multiwalled carbon nanotube (MWCNT) loaded transparent conducting oxide materials (TCOMs) based optically transparent antennas are designed to resonate at 750 GHz. TCOMs such as indium-doped tin oxide (ITO) and titanium-doped tin oxide (TIO) are used for designing the transparent terahertz patch antennas. Shorting pin technique is used to improve the impedance performances of the transparent antennas. The MWCNT is used for shorting the microstrip line with the ground plane of the antenna. By varying the position of short with respect to the antenna patch, the resonant frequency of the antennas are optimized to resonate at 750 GHz. The impedance and radiation performances of the MWCNT loaded transparent antennas are compared. A broad impedance bandwidth (−10 dB) is achieved for both the proposed antennas. The MWCNT shorting pin effect on radiation performances of the transparent antennas are discussed in detail. The antennas are simulated using finite element method (FEM) based electromagnetic solver, Ansys-HFSS.  相似文献   

8.
J. Fu  D. Chen  B. Sun  S. Gao 《Laser Physics》2010,20(10):1907-1912
A novel configuration of compound-cavity multi-wavelength Brillouin erbium fiber laser is proposed and experimentally demonstrated. With an incident optical carrier power of 8 dBm, at least 14 lasing lines are obtained with a wavelength spacing of ∼0.08 nm. Stability and power uniformity of the multi-wave-length lasing are ensured by the flat hybrid gain of Brillouin and erbium, the compound-cavity structure, and the four-wave mixing suppression using a long (10 km) single-mode fiber. A stable and frequency-switchable microwave can be achieved by incorporating a fiber Bragg grating filter to select the desired nth-order Stokes wave and beating it with the optical carrier at a photodetector. In our experiment, the 1st-4th-order Stokes waves are filtered respectively and hence a high-quality microwave with a switchable frequency from ∼10 to ∼40 GHz and a tuning step of ∼10 GHz is achieved. The signal-to-noise ratio is measured to be >25 dB.  相似文献   

9.
Bandwidth and thickness have become the most troublesome problems for EM cloaks. In this paper, we propose to solve the two problems using connected patches based on the microwave network model. By covering an obstacle with combined connected patches, cloaking effect can be achieved at multiple frequencies so as to expand the operating band. As an explicit example, a dual-band super-thin cloak using two different connected patch unit cells is demonstrated. Cloaking effect can be achieved at 3.50 GHz and 4.14 GHz simultaneously with an 8 dB transmission enhancement. The cloak design method provides a new route to broadening the bandwidth of thin EM cloaks.  相似文献   

10.
Planar Schottky diodes are integrated with bow-tie antennas to form a one-dimensional array. The energy is focused onto the antennas through a silicon lens placed on the back of the gallium-arsenide substrate. A polystyrene cap on the silicon lens reduces the reflection loss. A self-aligning process with proton isolation has been developed to make the planar Schottky diodes with a 1.1-THz zero-bias cutoff frequency. The antenna coupling efficiency and imaging properties of the system are studied by video detection measurements at 94 GHz. As a heterodyne receiver, a double-sideband mixer conversion loss of 11.2 dB and noise temperature of 3770°K have been achieved at a local oscillator frequency of 91 GHz. Of this loss, 6.2 dB is attributed to the optical system and the antenna.  相似文献   

11.
This paper represents an ellipse-shaped patch with a ground slotted broadband patch antenna for microwave head imaging systems. The proposed antenna constructs with a simple ellipse shaped square patch and modified slotted plane. The proposed design is very simple to fabricate and is enclosed in a microwave imaging system. The slotted patch, and the partial ground plane improves the antenna's efficiency, operating frequency range, and gain. The size of the proposed antenna is 70 × 60 × 1.5 mm3 with the electrical dimension being 0.277λ × 0.238λ × 0.006λ at a lower frequency of 1.19 GHz and connected to a 50Ω microstrip feeding line. This antenna is printed onto a low-cost FR-4 substrate whose relative permittivity is 4.4, and whose thickness is 1.5 mm. CST and HFSS software have been used for simulation and thereafter successful completion of the measurements and the fabrication. The comprehensive simulation exhibits that this design provides a bandwidth of 2.37 GHz (1.19 – 3.56 GHz) and 100% of the fractional bandwidths (% BW) with the reflection coefficient of <-10 dB. This antenna on FR-4 can produce an average gain of around 3.63 dBi with 5.95 dBi peak gain at whole operation frequencies. The prototype has a peak radiation efficiency of approximately 97% across the active frequency spectrum with 93% of average. The antenna does have an improved fidelity-factor (> 90 %) with a shorter group-delay. Several design modifications have been performed to get perfect, effective, and suitable results for microwave imaging applications. A 3D-realist Hugo head model is fitted with a single antenna and a 9-antenna array component to verify the performance of both the single antenna, and the configured array antenna. The antenna penetrates the brain human tissues satisfactorily. Across the operational range, the specific absorption rate (SAR) attains a limit of <1 W/kg. The analysis of both numeric and experimental evidence clearly indicates that the suggested antenna is ideal for microwave head-imaging implementations.  相似文献   

12.
The rod-shaped Co-Ni-P shells were prepared by metalling Bacillus. The microstructures and composition of the shells were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive analysis (EDS). The electromagnetic parameters were measured by the coaxial line method in the frequency of 2-18 GHz. It was found that the Bacillus were successfully coated with Co-Ni-P, and the inner structure of the shells are hollow in structure. The shells exhibit excellent microwave absorption properties in 5-17 GHz frequency. The microwave reflection loss is above −10 dB in 5.38-16.6 GHz frequency. The maximum microwave reflection loss reaches −35.83 dB at 9.12 GHz for samples thickness 2.4 mm, and the widest bandwidth for microwave reflection loss above −10 dB is about ∼5.32 GHz for samples thickness 2.0 mm. These results confirm the feasibility of applying Bacillus as biotemplates for fabrication of the metallic shells as lightweight microwave absorption materials are very promising for applications.  相似文献   

13.
The Su–Schrieffer–Heeger (SSH) model has been the subject of extensive experimental research in the context of topological photonics. Ideally, the on‐site potential and hopping strength are sufficiently accurate for implementation in photonic coupled waveguide arrays. Here, two localized edge modes, the topological zero mode and trivial Tamm mode, are proposed and demonstrated in the modified SSH model using a microwave photonic waveguide array. The system used is composed of an array of evanescently coupled ultrathin corrugated metallic “H‐bar” waveguides. Furthermore, the differences between the zero mode and Tamm mode are clearly demonstrated by microwave near‐field experiments on the coupling behavior along the propagation direction for 40 cm at the excitation frequency of 17 GHz. These findings should deepen the understanding of localized edge mode confinement mechanisms, both in coupled waveguide array systems and other topological or quantum systems.  相似文献   

14.
The microwave absorption properties of nanosized double perovskite Sr2FeMoO6 and epoxy resin composites were investigated in the frequency range of 2-18 GHz using the coaxial method. The Sr2FeMoO6 composites with an optimal 20 wt% epoxy resin showed a strong electromagnetic attenuation of −49.3 dB at 8.58 GHz with a matching thickness of 2.15 mm. Moreover the optimum absorption frequency at which the reflection loss is less than −20 dB, which corresponds to 99% reflection loss of the incident microwave, is from 5.7 to 13.2 GHz with the matching thickness ranging from 3.0 to 1.5 mm. The excellent microwave-absorption properties are a consequence of a proper electromagnetic match due to the existence of the insulating matrix of anti-site defects and anti-phase domains, which not only contribute to the dielectric loss but also to the reduced eddy current loss.  相似文献   

15.
Magnetic hollow spheres of low density were prepared by plating Fe3O4 magnetic films on hollow glass spheres using ferrite plating. The complex permeability and permittivity of spheres–wax composites were measured in the range of 2–18 GHz. The complex permeability and permittivity increased, and the dielectric and magnetic losses were improved as the volume fraction of the magnetic spheres in the composites increased from 60% to 80%, which also resulted in a great improvement of microwave absorption properties. For composites with volume fraction 80%, its magnetic resonance frequency was at about 13 GHz and it appeared three loss peaks in the calculated reflection loss curves; the bandwidth less than −10 dB was almost 4 GHz which was just in the Ku-band frequencies (12–18 GHz) and a minimum reflection loss of −20 dB was obtained when the thickness was 2.6 mm; the microwave absorbing properties were mainly due to the magnetic loss. The results showed that the magnetic spheres composites were good and light microwave absorbers in the Ku-band frequencies.  相似文献   

16.
An integrated photonic microwave reconfigurable filter was proposed and realized incorporating a tunable polymeric ring resonator. Its passband could be shaped electrically by shifting the resonant peaks of the resonator via the thermo-optic effect. As for the achieved performance, the center frequency was 20 GHz, the extinction ratio ∼15 dB, the bandwidth 2 GHz, and the corresponding quality factor 10. The microwave output within the passband was varied efficiently by ∼27 dB with the rate of ∼6.7 dB/mW, while the wavelength tuning rate of the resonator was −0.02 nm/mW.  相似文献   

17.
Pine litter flame is a weakly ionised medium. Electron-neutral collisions are a dominant form of particle interaction in the flame. Assuming flame electrons to be in thermal equilibrium with neutrals and average electron-neutral collision frequency to be much higher than the plasma frequency, the propagation of microwaves through the flame is predicted to suffer signal intensity loss. A controlled fire burner was constructed where various natural vegetation species could be used as fuel. The burner was equipped with thermocouples and used as a cavity for microwaves with a laboratory quality network analyzer to measure wave attenuation. Electron density and collision frequency were then calculated from the measured attenuation. The parameters are important for numerical prediction of electromagnetic wave propagation in wildfire environments. A controlled pine litter fire with a maximum flame temperature of 1080 K was set in the burner and microwaves (8–10.5 GHz) were caused to propagate through the flame. A microwave signal loss of 1.6–5.8 dB was measured within the frequency range. Based on the measured attenuation, electron density and electron-neutral collision frequency in pine fire were calculated to range from 0.51–1.35 × 1016 m−3 and 3.43–5.97 × 1010 s−1 respectively.  相似文献   

18.
A novel configuration using only one Mach-Zehnder interferometer (MZI) for photonic-assisted instantaneous microwave frequency measurement is proposed. The amplitude comparison function (ACF), related to the input microwave frequency while independent of the input optical power and modulate index, is achieved by using a ratio of low-pass to bandpass frequency responses introduced by intensity and phase modulation with a shared MZI. The microwave frequency can be estimated by the measured ACF. A proof-of-concept experiment for measurement of RF from 5 to 10 GHz is successfully demonstrated with the measurement errors less than ± 0.2 GHz.  相似文献   

19.
The effect of microwave radiation in the frequency range from 1.2 to 10 GHz on the magnetoresistance of a high-mobility two-dimensional electron gas has been studied in a GaAs quantum well with AlAs/GaAs superlattice barriers. It has been found that the microwave field induces magnetoresistance oscillations periodic in the reciprocal magnetic field (1/B). It has been shown that the period of these oscillations in the covered frequency range depends on the microwave radiation power.  相似文献   

20.
To solve more and more serious electromagnetic interference problem, one thin microwave absorbing sheet employing carbonyl-iron powder (CIP) and chlorinated polyethylene (CPE) was prepared. The pattern, static magnetic properties and phase of CIP were characterized by scanning electron microscope (SEM), vibrating sample magnetometer (VSM) and X-ray diffraction (XRD), respectively. The electromagnetic parameters of CIP were measured in the frequency range of 2-18 GHz, and the electromagnetic loss mechanisms of the powder were discussed. The microwave absorption properties of composite sheets with different thicknesses and CIP ratios in matrix were investigated by measuring reflection loss (RL) in 2-18 GHz frequency range using the arch method. The results showed that appropriate CIP content and thickness could greatly improve microwave absorption properties in lower frequency range. For the sample with the weight ratio (CIP:CPE) of 16:1 and 1.5 mm thickness, the bandwidth (RL below −10 dB) achieved 1.1 GHz (2-3.1 GHz), and the minimum reflection loss value was obtained −13.2 dB at 2.2 GHz. This suggested that CIP/CPE composites could be applied as thin microwave absorbers in S-band (2-4 GHz).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号