首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Classical density functional theory (cDFT) is used to investigate electrosorption of ionic liquids in porous electrodes within the framework of a coarse-grained model. The purpose of this study is to clarify the influence of the side alkyl chains of imidazolium cations on the electric double layer (EDL) capacitance that was studied in a number of recent investigations but with contradictory trends. For an ionic liquid near a planar electrode, cDFT predicts that the capacitance falls by extending the alkyl chain length of cations because neutral segments reduce the packing density of counterions thus the charge density. The side-chain effect is more complicated for ionic liquids in micropores owing to space-charge competition. Adding neutral segments to imidazolium cations always reduces the capacitance in cases where the surface electrical potential of micropores is sufficiently large. However, the capacitance shows a nonmonotonic dependence on the alkyl chain length at intermediate surface potentials. Surprisingly, addition of neutral segments to the cations has the most pronounced effect on the EDL capacitance in cases when the surface potential is positively charged. These findings challenge the conventional assumption that the alkyl side chains of imidazolium ions only negatively impact ionic liquid performance in charge storage.  相似文献   

2.
Non-contact atomic force microscopy (NCAFM) minimizes the physical interaction between the AFM tip and the surface of interest. Several recent studies have reported observation of single atom defects using this technique. The repulsive force is presumably the primary interatomic force (cf. our paper on pseudo-non-contact mode in this issue) responsible for the reported atomic resolution in these studies. The combination of these factors, minimal tip–sample deformation and repulsive force interaction, are responsible for the observation of the single atom defects. In the present study, we show that similar resolution can be achieved utilizing the same two factors but which employs scanning in a surfactant. The method decreases the tip–sample interaction by eliminating the attractive forces between the tip and sample. The surfactant solution induces an electrical double-layer (EDL) on the surface of the tip and sample. This EDL creates additional repulsion that is distributed over a large area, and hence does not contribute noticeably to the image contrast during scanning. However, it does compensate for the high pressures normally experienced by the tip in the absence of surfactant. In addition, the presence of the EDL enhances tip stability during the image scan. This method has been tested on surfaces of such minerals as mica, chlorite, and anhydrite.  相似文献   

3.
At the solid/liquid interface, a charge zone called the Electrical Double Layer (EDL) appears. It is constituted of two zones of opposite sign, one in the solid and another one in the liquid. When a liquid flows through a pipe, an axial streaming current is generated. This current is due to the convection of the charges coming from the electrical layer in the liquid. The experimental methods for the determination of space charge density have been clearly identified in the case of fully-developed EDL. On the contrary, there is a need for further exploration in the case of a non-fully developed EDL. The purpose of this paper is to calculate the fully developed space charge density at the wall by streaming electrification experiments which are conducted in the case of non-fully developed EDL. Moreover, it introduces a simplified procedure for the experimental determination of space charge density as a function of liquid flow velocity. This procedure can be conducted for the investigation of flow electrification phenomena in transformers with oil/metal configuration.  相似文献   

4.
Electrokinetic potential of particles has been extensively studied in colloidal systems over the past century, while up to date, the influence of gas on electrokinetic behaviors of particles has not been fully understood yet. In this study, the electrokinetic response of particles to gas nucleation was systematically investigated with coal as the object. The results showed that the nucleation of gas (both on particle surfaces and in water) significantly changed the particle’ electrokinetic behaviors. Higher gas content and particle’s surface hydrophobicity normally trigger more intensive gas nucleation, thus inducing more significant reduction of particle zeta potential. After gas nucleation, numerous nanobubbles (NBs) appear in the suspensions mainly in two forms: NBs adhering onto solid surfaces (ANBs) and NBs stagnating in bulk solutions (BNBs). ANBs not only enhance the surface heterogeneity, but also cause the “steric hindrance” effect, and electric double layer (EDL) overlapping and associated ions shielding towards charged particles, which significantly decrease their electrokinetic potentials. Although BNBs can also reduce the zeta potential of particles by EDL compressing, their functions are rather limited.  相似文献   

5.
In order to maximize the capacitance of electrical double layer (EDL) capacitors per unit electrode volume, higher surface areas are required. This leads to an increasingly greater subdivision of the carbon electrode, namely to pore systems of smaller pore size. When the pore size approaches the ion size, the EDL charging kinetics lows down because of multiple interactions of the ions with the surrounding pore walls. On the other hand, the ion electroadsorption capacity increases just because of this enhanced interaction. Therefore, there is a conflict between improving discharge kinetics and improving capacity. Knowing the effective ion size relative to the pore size can be helpful in optimizing the pore system design in electrodes for EDL capacitors. A thorough technique based on the adsorption of molecular probes in the gas phase and the electroadsorption of different ions was developed to assess pore dimensions. In this report, the technique is applied to the unique case of polyvinylidene chloride (PVDC) based carbon electrodes in an attempt to elucidate its extraordinary high EDL capacitance, in terms of the relation between effective ion size and pore size. PACS 82.47.Uv; 73.22.-f; 73.30.+y; 82.75.-z  相似文献   

6.
The analysis in this paper shows that the Hohenberg-Kohn theorem is the constellation of two statements: (i) the mathematically rigorous Hohenberg-Kohn lemma, which demonstrates that the same ground-state density cannot correspond to two different potentials of an external field, and (ii) the hypothesis of the existence of the universal density functional. Based on the obtained explicit expression for the nonrel-ativistic particle energy in a local external field, we prove that the energy of the system of more than two non-interacting electrons cannot be a functional of the inhomogeneous density. This result is generalized to the system of interacting electrons. It means that the Hohenberg-Kohn lemma cannot provide justification of the universal density functional for fermions. At the same time, statements of the density functional theory remain valid when considering any number of noninteracting ground-state bosons due to the Bose condensation effect. In the framework of the density matrix functional theory, the hypothesis of the existence of the universal density matrix functional corresponds to the cases of noninteracting particles and to interaction in the Hartree-Fock approximation.  相似文献   

7.
The path-integral renormalization group and direct energy minimization method of practical first-principles electronic structure calculations for multi-body systems within the framework of the real-space finite-difference scheme are introduced. These two methods can handle higher dimensional systems with consideration of the correlation effect. Furthermore, they can be easily extended to the multicomponent quantum systems which contain more than two kinds of quantum particles. The key to the present methods is employing linear combinations of nonorthogonal Slater determinants (SDs) as multi-body wavefunctions. As one of the noticeable results, the same accuracy as the variational Monte Carlo method is achieved with a few SDs. This enables us to study the entire ground state consisting of electrons and nuclei without the need to use the Born-Oppenheimer approximation. Recent activities on methodological developments aiming towards practical calculations such as the implementation of auxiliary field for Coulombic interaction, the treatment of the kinetic operator in imaginary-time evolutions, the time-saving double-grid technique for bare-Coulomb atomic potentials and the optimization scheme for minimizing the total-energy functional are also introduced. As test examples, the total energy of the hydrogen molecule, the atomic configuration of the methylene and the electronic structures of two-dimensional quantum dots are calculated, and the accuracy, availability and possibility of the present methods are demonstrated.  相似文献   

8.
The electrostatic interaction of two spherical macroparticles in a plasma has been considered. Primary attention has been focused on investigating the electrostatic interaction at short distances where polarization effects of the surface charge of finite-size macroparticles begin to play a dominant role. The first part of this study is devoted to the interaction of a point charge with a charged conducting sphere in an equilibrium plasma. It has been shown that the presence of a plasma in the system leads to a decrease in the potential barrier when two like-charged macroparticles approach each other and that this decrease proves to be the most significant in the case where the macroparticle radius is comparable to the Debye screening length. The second part of this study is concerned with the interaction of two conducting spheres in the bispherical system of the coordinates under the assumption that the charges of the conducting spheres are constant and under the assumption that the surface potentials of the spheres are constant. The latter case is closer to the physics of electrostatic interaction of two macroparticles in a plasma medium where the electrostatic potential of their surface is determined by the floating potential of the plasma. It has been demonstrated that the interaction potentials in these two cases are substantially different from each other and that, at constant macroparticle charges, the energy of the electrostatic field is an interaction potential, but, in the case of macroparticles with constant surface potentials, which are independent of the interparticle distance, the energy of the electrostatic field is not an interaction potential. In the latter case, account must be taken of the work done by external sources on the macroparticle potentials to maintain them constant. The form of the interaction potential has been established in this case from the analysis of the interaction force in terms of the Maxwell tension tensor. In the third part of this study, the interaction of two macroparticles has been considered in the spherical system of coordinates and analytical expressions for the interaction potentials have been derived for both the case of constant macroparticle charges and the case of constant surface potentials of the macroparticles.  相似文献   

9.
Elastic scattering properties of the ultracold interaction for the triplet state of 133Cs and 85Rb atoms are studied using two kinds of potentials by the same phase Φ. One is the interpolation potential, and another is Lennard-Jones potential (L J12,6). The radial Schr(o)dinger equation is also solved using two computational methods, the semiclassical method (WKB), and the Numerov method. Our results are found to be in an excellent agreement with the more recent theoretical values. It shows that the two potentials and methods are applicable for studying ultracold collisions between the mixing alkali atoms.  相似文献   

10.
 本文对孤立离子Hartree-Fock波函数的数值解出发,直接计算了NaCl晶体中各种离子对的相互作用势。结果表明,对不同的离子对,其短程作用势性质不同。对Na+-Cl-离子对,其短程作用势为正,而对Cl--Cl-离子对和Na+-Na+离子对,对物理上感兴趣的大部分距离范围内,其短程作用势为负。在对以上的离子对势进行了解析拟合后,通过晶格动力学的方法计算了晶体的Grüneisen参数和物态方程,其结果与实验符合程度是令人满意的。  相似文献   

11.
Alhassid conjectured that the total energy of a harmonically trapped two-component Fermi gas with a short range interaction is a linear functional of the occupation probabilities of single-particle energy eigenstates. We confirm his conjecture and derive the functional explicitly. We show that the functional applies to all smooth (namely, differentiable) potentials having a minimum, not just harmonic traps. We also calculate the occupation probabilities of high energy states.  相似文献   

12.
The effective energy functional for nuclei near the nucleon stability boundary is modified by taking into account that the functional parameters corresponding to interaction in the surface region depend on the neutron and proton chemical potentials μn and μp, respectively, in a nucleus. By the example of several long isotope chains, it is shown that the μ dependence of the effective interaction results in shifting the neutron stability boundary toward large N-Z values.  相似文献   

13.
The computer simulation of condensed systems is a challenging task. While electronic structure methods like density-functional theory (DFT) usually provide a good compromise between accuracy and efficiency, they are computationally very demanding and thus applicable only to systems containing up to a few hundred atoms. Unfortunately, many interesting problems require simulations to be performed on much larger systems involving thousands of atoms or more. Consequently, more efficient methods are urgently needed, and a lot of effort has been spent on the development of a large variety of potentials enabling simulations with significantly extended time and length scales. Most commonly, these potentials are based on physically motivated functional forms and thus perform very well for the applications they have been designed for. On the other hand, they are often highly system-specific and thus cannot easily be transferred from one system to another. Moreover, their numerical accuracy is restricted by the intrinsic limitations of the imposed functional forms. In recent years, several novel types of potentials have emerged, which are not based on physical considerations. Instead, they aim to reproduce a set of reference electronic structure data as accurately as possible by using very general and flexible functional forms. In this review we will survey a number of these methods. While they differ in the choice of the employed mathematical functions, they all have in common that they provide high-quality potential-energy surfaces, while the efficiency is comparable to conventional empirical potentials. It has been demonstrated that in many cases these potentials now offer a very interesting new approach to study complex systems with hitherto unreached accuracy.  相似文献   

14.
We apply a modified mean-field density functional theory to determine the phase behavior of Stockmayer fluids in slit-like pores formed by two walls with identical substrate potentials. Based on the Carnahan-Starling equation of state, a fundamental-measure theory is employed to incorporate the effects of short-ranged hard-sphere-like correlations while the long-ranged contributions to the fluid interaction potential are treated perturbatively. The liquid-vapor, ferromagnetic-liquid-vapor, and ferromagnetic-liquid-isotropic-liquid first-order phase separations are investigated. The local orientational structure of the anisotropic and inhomogeneous ferromagnetic liquid phase is also studied. We discuss how the phase diagrams are shifted and distorted upon varying the pore width.  相似文献   

15.
16.
We introduce a model combining a density functional based tight-binding method with a configuration interaction like scheme to treat charge delocalization in ionized molecular clusters. As an application, we determine the size-evolution of some properties of stack coronene clusters, namely charge delocalization, binding energies and ionization potentials.  相似文献   

17.
利用密度泛函理论并结合改进的基本度量理论研究了受限于对称性破缺狭缝间氢键流体的相平衡. 首先根据氢键流体的吸附-脱附等温线及相应巨势获得不同条件下氢键流体的相图. 进一步讨论了氢键作用、狭缝间距、狭缝与流体分子间相互作用及对称性破缺程度等因素对氢键流体相平衡的影响. 结果表明, 由于狭缝与流体分子及流体分子间的相互作用存在竞争, 使得受限于对称性破缺条件下的氢键流体呈现更为复杂的相态特征.  相似文献   

18.
The singlet electronic excitation spectrum of pyrrole has been reinvestigated by both multi-reference multi-root configuration interaction (CI) calculations and time-dependent density functional theory (DFT) with asymptotically corrected exchange-correlation potentials. The methods used a triple zeta valence + polarization + Rydberg (TZVPR) basis set and a much larger active space than in our previous CI study [Palmer, M. H., Walker, I. C., and Guest, M. F., 1998, Chem. Phys., 238, 179]. Computed vertical excitation energies, oscillator strengths and electronic charge distributions were used to characterize and assign the valence and Rydberg excited states over an energy range of 5–12 eV.

A comparison of the present methods with other high-level ab initio studies has been made, including the effects of basis sets and size of CI, and some statistical relationships determined. The present CI vertical excitation energies are generally in closer agreement with the cluster-type methods, especially CC3, than to the various second-order perturbation-type methods (CASPT2, CASPT2-MS, ADC(2) and MRMP).

The influence on the excitation energies from exact orbital exchange and multiplicative potentials in hybrid functional development has been investigated. Differences between the CI and the DFT methods vary in the order B97-2 < B97-1 < HCTH < LDA. The differences between hybrid DFT and CI excitations are minimized when the fraction of orbital exchange (ξ) lies in the approximate range 0.2–0.3. The Rydberg and valence-type excitations are seen to be less sensitive than the static polarizability to the inclusion of orbital exchange or multiplicative potentials in hybrid functional development.

In order to allow a realistic assessment of the performance of the theoretical studies, the assignment of the experimental electronic spectrum of pyrrole is discussed in detail. Previous conclusions have led to incorrect numbers of Rydberg s- and d-type states, while f-type states have previously been ignored. Some excitations from the second IP, which must occur in the 5–10 eV range, have been reassigned in light of the known small differences between other spectroscopic states and quantum defects. There is an urgent need for higher-resolution studies of pyrrole and related molecules.  相似文献   

19.
Association energies of nearest-neighbour and next-nearest-neighbour associates between substitutional, trivalent rare-earth ions and interstitial fluoride ions CaF2, SrF2 and BaF2 are obtained by lattice simulation calculations. The dopant ion-fluoride ion interaction is described (i) with a set of potentials obtained with electron gas methods, and (ii) with a set of potentials derived semi-empirically from the host lattice cation-anion interaction potentials. The calculations successfully simulate the experimentally observed variations of the dopant-interstitial binding energies with the radius of the dopant ion, and with the lattice parameter of the host. The better quantitative agreement is obtained with the semi-empirical potentials. The variations are explained by an evaluation of the displacements of the ions constituting the associates.  相似文献   

20.
利用基于密度泛函理论框架下的局域密度近似方法对Ne-CH4分子间的相互作用势进行了计算. 发现: 当Ne原子和CH4分子之间的距离约为5.8 a.u.时, 计算的势能曲线存在最小值, 对应的势阱深度约为0.053 eV. 计算结果与实验值符合较好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号