首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The application of laser ionisation is being developed for the IGISOL mass separator facility in Jyväskylä, Finland. The conceived laser ion source will have two independent pulsed laser systems based on all solid-state lasers and dye lasers for maximal coverage of ionisation schemes throughout the periodic table. A laser ion source trap, LIST, method will be pursued for optimal selectivity.  相似文献   

2.
SHIPTRAP is an ion trap facility which is being set up to deliver very clean and cool beams of singly-charged recoil ions produced at the SHIP velocity filter at GSI Darmstadt. SHIPTRAP consists of a gas cell for stopping and thermalizing high-energy recoil ions from SHIP, a rf ion guide for extraction of the ions from the gas cell, a linear rf trap for accumulation and bunching of the ions, and a Penning trap for isobaric purification. The physics programme of the SHIPTRAP facility comprises mass spectrometry, nuclear spectroscopy, laser spectroscopy and chemistry of transeinsteinium elements. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
A new gas purification system has been constructed at the upgraded IGISOL facility, Jyväskylä, to meet the need for ultra-high purity helium and argon buffer gas used in the ion guide technique. The purification of helium using liquid nitrogen-cooled cold traps is investigated and compared with unpurified gas using mass spectra obtained at the focal plane of the separator. Neon, an impurity intrinsic to the in-house recycled helium, was seen to have high sensitivity to the impurity level of the gas which is expected to reach sub-parts-per-billion level.  相似文献   

4.
A beam cooler for low-energy ion beams was constructed to improve the ion optical properties of radioactive ion beams produced at the IGISOL facility in Jyväskylä. The beam cooler is a buffer gas filled RF-quadrupole. The delay properties and the possibility to accumulate a continuous IGISOL beam and release it in short bunches is discussed.  相似文献   

5.
We present an overview of recent laser ion source developments at the IGISOL facility, Jyväskylä. Technological advances in the lasers have led to a considerable increase in second-harmonic laser power with the use of intra-cavity second-harmonic generation, as well as to narrow linewidth capability by applying an injection-locking technique to a Ti:sapphire laser. The use of a diffraction grating for frequency selection in a new laser resonator has dramatically improved the wide-range tunability of the laser system, resulting in an ideal tool for the development of new ionization schemes. The role of different laser bandwidths, laser intensity and environmental broadening mechanisms on the experimental width of the measured spectral line have been studied using bismuth, silver and nickel, in the gas cell and expanding gas jet. Applications of novel ion guide nozzle design has led to remarkably collimated gas jets which overcome the current limitations in the gas cell-based laser ion source trap (LIST) method. Detailed planning is under way to optimize the new laser laboratory and laser transport path in order to fully exploit the unique opportunities afforded by the new IGISOL-4 facility.  相似文献   

6.
A next-generation slow radioactive nuclear ion beam facility (SLOWRI) which provides slow, high-purity and small emittance ion beams of all elements is being build as one of the principal facilities at the RIKEN RI-beam factory (RIBF). High energy radioactive ion beams from the projectile fragment separator BigRIPS are thermalized in a large gas catcher cell. The thermalized ions in the gas cell are guided and extracted to a vacuum environment by a combination of dc electric fields and inhomogeneous rf fields (rf carpet ion guide). From there the slow ion beam is delivered via a mass separator and a switchyard to various devices: such as an ion trap, a collinear fast beam apparatus, and a multi-reflection time of flight mass spectrometer. In the R&D works at the present RIKEN facility, an overall efficiency of 5% for a 100A MeV 8Li ion beam from the present projectile fragment separator RIPS was achieved and the dependence of the efficiency on the ion beam intensity was investigated. Recently our first spectroscopy experiment at the prototype SLOWI was performed on Be isotopes. Energetic ions of 10Be and 7Be from the RIPS were trapped and laser cooled in a linear rf trap and the specific mass shifts of these isotopes were measured for the first time.  相似文献   

7.
The TITAN facility at TRIUMF-ISAC will use four ion traps with the primary goal of determining nuclear masses with high precision, particularly for short lived isotopes with lifetimes down to approximately 10 ms. The design value for the accuracy of the mass measurement is 1 ×10???8. The four main components in the facility are an RF cooler/buncher (RFCT) receiving the incoming ion beam, an electron beam ion trap (EBIT) to breed the ions to higher charge states, a cooler Penning trap (CPET) to cool the highly charged ions, and finally the measurement Penning trap (MPET) for the precision mass determination. Additional goals for this system are laser spectroscopy on ions extracted from the RFCT and beta spectroscopy in the EBIT (in Penning trap mode) on ions that are purified using selective buffer gas cooling in the CPET. The physics motivation for the mass measurements are manifold, from unitarity tests of the CKM matrix to nuclear structure very far from the valley of stability, nuclear astrophysics and the study of halo-nuclei. As a first measurement the mass of 11Li will be determined. With a lifetime of 8.7 ms and a demonstrated production rate of 4×104 ions/sec at ISAC the goal for this measurement at TITAN is a relative uncertainty of 5×10???8. This would check previous conflicting measurements and provide information for nuclear theory and models.  相似文献   

8.
An ion beam cooler has been constructed and tested at the IGISOL mass separator facility at the University of Jyväskylä. The cooler is designed to improve the ion optical properties of radioactive ion beams produced with fission-, light-ion fusion and heavy ion fusion ion guides. The performance of the device has been tested in off- and on-line conditions. It has been shown that the emittance and energy spread of the ion beam can be decoupled from the ion guide parameters with high transmission efficiency.  相似文献   

9.
A programme of research has commenced at the IGISOL facility, Jyväskylä, combining the technique of resonance ionization spectroscopy with the development of the highly selective laser ion source trap (LIST). The first element of interest is bismuth, which contains three isomers of multi-quasiparticle states in near-spherical nuclei, namely 207Bi (21/2+, 182 μs), 204Bi (10?, 13 ms) and 204Bi (17+, 1.07 ms). A measurement of the optical isomer shift provides a direct comparison of the mean?square charge radii between the isomer and the nuclear ground state. Due to the short isomer lifetimes the spectroscopy will be done either within the ion guide or in a sextupole ion beam guide (SPIG), located after the ion guide and used in the development of the LIST. A mixed dye-Ti:Sapphire laser ionization scheme has been successfully tested for bismuth and first off-line results have been obtained.  相似文献   

10.
In 2011 the collinear laser spectroscopy programme at the University of Jyväskylä Accelerator Laboratory (JYFL), Finland, will move to the new IGISOL 4 facility. With its own dedicated cyclotron, this new laboratory will offer unparalleled access to beam time for both technique development and exploitation. Production of sub-millisecond states is available, including elements of a refractory nature.  相似文献   

11.
Recent laser spectroscopy studies at the IGISOL facility, University of Jyväskylä have focussed on the shape transition at N?=?60. A new technique of optical pumping in the ion beam cooler has given unique access to the radioactive isotopes of niobium and yttrium. Further spectroscopy from metastable states allowed nuclear moments and charge radii to be extracted for isotopes in the chains of Mo and Nb, thus exploring the extent of nuclear deformation across the entire Z?=?36–42 region.  相似文献   

12.
A new ion beam of 229Th is available at the Jyväsklyä IGISOL facility, produced from the α decay of 233U. A small branching ratio (≈ 2%) is believed to populate the inferred low-lying (5.5 eV) isomeric state in 229Th. A laser ionization scheme is currently being developed to improve the yield of 229Th from the source. The ion source uses a novel electric field configuration for fast and efficient extraction of α-recoils and is able to provide beams of short lived (τ≥ 30 ms) radioactive nuclei. Identification of the isomeric state by collinear laser spectroscopy will reduce the lower lifetime limit of the state and provide the first direct evidence for its existence.  相似文献   

13.
Conversion elecron spectroscopy has been an important part of the nuclear spectrocopy research at the Department of Physics of the University of Jyväskylä since the commissioning of the first cyclotron in the mid 1970s. At the IGISOL facility a specialiced conversion electron spectrometer ELLI was developed in the late 1980s. The first results with ELLI were obtained using the beams from the old MC-20 cyclotron to study newly discovered isotopes of refractory fission products. In the present K130 cyclotron laboratory ELLI has been utilized in many decay-spectroscopy experiments both neutron-deficient and neutron-rich side of the valley of stability. In the early 2000s the new JYFLTRAP ion trap system overthrew ELLI from its permanent place in the IGISOL beamline. Conversion electron spectroscopy has continued with the new Penning trap that has been used in in-trap electron spectroscopy tests and post-trap electron spectroscopy is foreseen.  相似文献   

14.
JYFLTRAP is a Penning trap system at the accelerator laboratory in Jyväskylä, Finland that enables high-precision experiments with stored, exotic species that are produced at the IGISOL facility. On one hand, these can be performed within the trap itself, like e.g. mass spectrometry. On the other hand, the trap can be used to provide the highly purified species for further experiments, e.g. for trap-assisted nuclear decay spectroscopy. This contribution focuses on these two possible applications with the presentation of some recent results on superallowed beta decays.  相似文献   

15.
The IGISOL (Ion Guide Isotope Separator On-Line) facility at the University of Jyväskylä accelerator laboratory has been upgraded and relocated to a purpose built laboratory. The new laboratory includes a dedicated MCC30 proton/deuteron cyclotron, which in conjunction with beams from the K130 cyclotron, will greatly increase the beam time available at the facility. Full off-line commissioning of the laser spectroscopy beam-line was achieved in February 2013 and on-line commissioning with radioactive beams was achieved in May 2013. Optical hyperfine resonance spectra were obtained for previously studied radioactive molybdenum isotopes and used to investigate our long term stability, efficiency and ability to successfully reproduce previous results from IGISOL III. A preliminary spectrum for the previously unmeasurable $^{107}$ Mo was collected, displaying the improved capabilities of the new facility. Both data-sets show that the laser-line is ready for future experiments. The IGISOL IV beams are cleaner and have a higher radioactive content compared to similar experiments at IGISOL III.  相似文献   

16.
A linear gas stopping cell has been implemented at the NSCL as part of the Low Energy Beam and Ion Trap (LEBIT) facility. The gas stopping cell is used to convert relativistic ions into low energy ions suitable for use in ion trap experiments. A common undesired property of such systems is the production of beam contaminants through charge exchange of gas impurities with the He +  ions produced in the stopping process. These contaminants are of particular concern for Penning trap mass spectrometry, where the simultaneous trapping of ions with different masses can cause unwanted shifts in the measured cyclotron frequency of the desired ions. In order to minimize such effects, a multi-stage beam purification system has been implemented at LEBIT.  相似文献   

17.
The method of resonance ionization spectroscopy for measurements of hyperfine structures and isotope shifts of heavy elements, at the IGISOL facility, Jyväskylä, is discussed. Two laser geometries are considered, with reference to the effect they have on resolution and efficiency of measurements. Results of off line resonance ionization tests on natural sodium are reported.  相似文献   

18.
Optical experiments at the IGISOL isotope separator facility, Jyväskylä, have for many years benefited from the introduction of an ion beam cooler. The device, a gas-filled RF quadrupole, reduces the emittance and longitudinal energy spread of the ion beam. Very recently, use has been made of the axial confinement of slowly travelling ions at the end of the cooler to redistribute the electronic populations through efficient laser excitation. Such a technique has proved beneficial to laser spectroscopic measurements and is a precursor to using the method to polarize the ion beam.  相似文献   

19.
The proposed Penning trap mass spectrometer, to be located at the TASCC facility of the Chalk River Laboratories, is described. The facility will be used for precise atomic mass determinations among both stable and unstable nuclides. The unstable nuclides would be produced in heavy ion reactions using the TASCC facility. The products from these reactions would be collected using an He-jet transport system loaded with NaCl aerosols. After transport to a background free area, the nuclides of interest would be laser desorbed and resonantly ionized. Subsequently, these ions would be accumulated in a Paul trap, cooled and injected into a precision Penning trap mass spectrometer for mass analysis.  相似文献   

20.
A new radioactive beam facility for ATLAS,the Californium Rare Ion Breeder Upgrade (CARIBU), is under construction.The facility will use fission fragments from a 1 Ci ~(252)Cf source;thermalized and collected into a low-energy beam by a helium gas catcher.In order to reaccelerate these beams,the existing ATLAS ECR-I ion source is being redesigned to function as a charge breeder source.The design and features of this charge breeder configuration is discussed and the project status described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号