首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this second paper, the effect of secondary electrons on the charge and potential of a dust particle immersed in plasma has been studied. The processes of electron‐induced ionization and those of photo‐electron and secondary electron emission from the particle surface as a function of primary electron temperature have been taken into account. Starting from temperatures as low as 6 eV in an Ar plasma, ionization produces an extra ion flux to the dust surface comparable to that of the ion charge exchange effect. For what concerns the surface emission, results show that a transition from negative to positive dust charge/potential takes place, and that the transition regime is characterized by a non‐monotonic behavior of the electric potential around the particle. In the case of photoelectric emission, the dust charge and potential are monotonic decreasing functions of the electron temperature, while in the case of emission induced by primary electrons a minimum charge/potential is reached before they grow towards positive values. In no case multiple dust charge states have been observed due to the presence of the potential well attached to the particle surface. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The continuum approximation is used to analyze the effect of electron emission from the surface of a spherical dust grain immersed in a plasma on the grain charge by assuming negligible ionization and recombination in the disturbed plasma region around the grain. A parameter is introduced that quantifies the emission intensity regardless of the emission mechanism (secondary, photoelectric, or thermionic emission). An analytical expression for the grain charge Z d is derived, and a criterion for change in the charge sign is obtained. The case of thermionic emission is examined in some detail. It is shown that the long-distance asymptotic behavior of the grain potential follows the Coulomb law with a negative effective charge Z eff, regardless of the sign of Z d. Thus, the potential changes sign and has a minimum if Z d > 0, which implies that attraction is possible between positively charged dust grains.  相似文献   

3.
Field emission properties of hot filament chemical vapor deposited boron doped polycrystalline diamond have been studied. Doping level (NB) of different samples has been varied by the B/C concentration in the gas feed during the growth process and doping saturation has been observed for high B/C ratios. Threshold field (Eth) for electron emission as function of B/C concentration has been measured, and the influences of grain boundaries, doping level and surface morphology on field emission properties have been investigated. Carrier transport through conductive grains and local emission properties of surface sites have been figured out to be two independent limiting effects in respect of field emission. Emitter current densities of 500 nA cm−2 were obtained using electric fields less than 8 V/μm.  相似文献   

4.
The dependence of photocurrent on laser intensity has been studied up to the damage threshold of tungsten using 30 ps pulses from a Nd:YAG laser. For intensities below ~1 GW/cm2, four-photon photoelectric emission is observed. For higher intensities three-photon assisted thermionic emission dominates. A generalized Fowler-DuBridge theory accounts quantitatively for our observations. A polycrystal surface cleaned by picosecond laser pulses has a work function different from surfaces cleaned by ordinary heating methods.  相似文献   

5.
An asymptotic theory of the screening of the dust-particle charge in a plasma with an external ionization source has been developed. It has been shown analytically that the screening of the charge of a dust particle adsorbing the charge of charged plasma particles that fall on it is not generally described by the Debye theory. The screening radius is determined by the relation between the coefficients βei and βL = 4πek i (k i is the ion mobility) of the electron-ion and Langevin recombinations, respectively. When βL ? β ei , the screening radius is much larger than the electron Debye radius. It has been shown that the contribution of the ion component of an isothermal plasma to screening is equal to the electron contribution if the coefficient of the electron-ion recombination is twice or more larger than the Langevin coefficient of the ion recombination, βei ≥ 2βL.  相似文献   

6.
The presence of dust grains is a common phenomenon in the space environment. Grains can be charged by many different processes (e.g., photoemission, attachment of electrons/ions, the secondary emission, etc.). If the grain's surface potential becomes high enough, one can observe field emission of ions or electrons. We are trapping a single dust grain in a Paul trap, expose it to a low-energy electron beam, and investigate the evolution of its charge-to-mass ratio with respect to the energy of primary electron beam. We use micron-sized (D = 2–11 m) glass grains and charge them up to -300 V of surface potentials; it corresponds to the electric field strength of about 108 V/m. Analysis of the charging/discharging processes has shown that (1) the effect of the field enhanced secondary emission is negligible in the case of insulators and (2) the effective work function for electron field emission from charged insulators is as low as 1 eV.  相似文献   

7.
This paper presents the analysis of the electrostatic force acting on a charged dielectric particle on a grounded plane. The force has been determined by a numerical field calculation method to make clear the effect of particle dielectric constant and charge distribution on the particle surface. The charge is treated to be distributed in three ways: (a) uniformly over entire surface, (b) partially on the upper, or (c) on the lower part of a particle. The calculation results show that, if a particle with dielectric constant ?p = 3 is partially charged on the lower part by a zenith angle π/2, π/4 and π/8, the force shall be higher by 0.7, 4.3 and 20 times, respectively, than that for a uniform charging with the same charge amount. On the other hand, the force becomes weaker when charge is on the upper part. The effect of the particle dielectric constant is found to be dependent on the charge distribution. With charge uniform on the entire surface or on the upper part, the force always increases with the dielectric constant. However, when surface charge is restricted to a small area at the lower part of the particle (θq < π/4), the force may decrease with increasing the dielectric constant.  相似文献   

8.
The paper describes the preparation and emission property of scandia and Re doped tungsten matrix impregnated cathode. By an easy and reproducible way, solid-liquid doping combined with two-step reduction, powders of tungsten particles covered with scandium oxide were obtained. Compared with scandia mixed tungsten powders prepared by mechanically mixing, scandia and rhenium doped tungsten powders had smaller particle size, for example, scandia (3 wt%) and Re (5 wt%) doped tungsten powders had the average size of about 50 nm in diameter. Based on this kind of powder, scandia and Re doped tungsten matrix with the sub-micrometer sized tungsten grains and a more uniform distribution of Sc2O3 were obtained in this paper. Scandia and Re doped tungsten matrix impregnated cathode had shown excellent emission property and good emission uniformity. The space charge limited current densities of more than 58A/cm2 at 900 °Cb could be obtained and the work function of this cathode was as low as 1.18 eV.  相似文献   

9.
For many decades it has been assumed that an adsorbate centered above a metal surface and with a net negative charge should increase the work function of the surface. However, despite their electronegativity, N adatoms on W[100] cause a significant work function decrease. Here we present a resolution of this anomaly. Using density functional theory, we demonstrate that while the N atom carries a negative charge, of overriding importance is a reduction in the surface overspill electron density into the vacuum, when that charge is engaged in bonding to the adatom. This novel interpretation is fundamentally important in the general understanding of work function changes induced by atomic adsorbates.  相似文献   

10.
The field emission injection of low-energy electrons (E e ?? 10 eV) into the ZnSe/CdSe/ZnSe heterostructure has been considered. The probe of the ultra-high-vacuum tunneling microscope has been used as a field emitter. It has been shown that the energy of injected electrons is sufficient for impact ionization in ZnSe. The impact ionization creates a high concentration of nonequilibrium carriers in the near-surface ZnSe layer. The transport of nonequilibrium carriers in the heterostructure under study has been simulated. The electric field of the near-surface space charge and surface recombination have been taken into account. The calculation has demonstrated that filling the active region of CdSe with nonequilibrium carriers is highly efficient.  相似文献   

11.
Mo-doped TiO2 multilayer thin films were prepared by RF magnetron co-sputtering. Microstructures, crystallite parameters and the absorption band were investigated with atomic force microscopy, X-ray diffraction and ultraviolet-visible spectroscopy. Internal carrier transport characteristics and the photoelectric property of different layer-assemble modes were examined on an electrochemical workstation under visible light. The result indicates that the double-layer structure with an undoped surface layer demonstrated a red-shifted absorption edge and a much stronger photocurrent compared to the uniformly doped sample, signifying that the electric field implanted at the interface between particles in different layers accelerated internal charge transfer effectively. However, a heavily doped layer implanted at the bottom of the three-layer film merely brought about negative effects on the photoelectric property, mainly because of the Schottky junction existing above the substrate. Nevertheless, this obstacle was successfully eliminated by raising the Mo concentration to 1020 cm?3, where the thickness of the depletion layer fell into the order of angstroms and the tunneling coefficient manifested a dramatic increase. Under this circumstance, the Schottky junction disappeared and the strongest photocurrent was observed in the three-layer film.  相似文献   

12.
Various negatron effects in films of alloys of II–VI compounds deposited from solutions as a function of the deposition mode and heat treatment are studied. It is found that the negative photocapacitance effect, which was first discovered in ZnS1?x Se x films, and the slowly relaxing negative photoelectric effects, which are caused by the transition of electrons located in a nanoscale surface layer from the shallow energy levels of trapping centers to deeper levels with a lower polarizability and by the presence of nanoscale clusters in these materials, which play the role of a “reservoir” for minority charge carriers, occur according to a single mechanism. A model to explain the basic laws of negative photoconductivity in CdSe1 ? x Te x films deposited from a solution is proposed. Negative residual conductivity is explained in terms of double-barrier relief model, while negative differential photoconductivity is attributed to the presence of nanoscale electric domains.  相似文献   

13.
Mixed metal matrix cathodes have inherent non-uniformity and patchiness of emission due to the presence of two-alloy phase structure on the surface. I-V characteristics of cathode studied in a close spaced diode configuration is one of the easy and cost effective methods to estimate the variation of work function on the cathode surface. Tungsten iridium mixed metal matrix dispenser cathodes of Ø1.4 mm (80 wt.% W-20 wt.% Ir) have been fabricated in the laboratory and their I-V characteristics have been investigated in diode configuration. In this paper the model suggested by Tonnerre et al. has been used to find out the work function distribution of W-Ir cathodes from I-V characteristics. An attempt has been made to correlate the microstructure with the work function values.  相似文献   

14.
The effect of plasma environment on the ground state energies of exotic systems ppμ, ddμ and ttμ has been analyzed within a generalized three-body formalism using multi-term correlated basis sets. The Debye screening model of the plasma has been adopted for such a study. The binding energies of p with pμ, d with dμ and t with tμ have been estimated for a range of values of the Debye screening parameters. The systems tend toward instability for increased screening. The effect of particle correlation has been investigated in detail and is found to play an important role for the stability in these systems.  相似文献   

15.
A theoretical model for the effect of dust grains on the self‐filamentation of a Gaussian electromagnetic beam propagating in a fully ionized plasma has been developed by employing the energy balance of the plasma constituents, perturbed electron and ion concentrations, and temperature. In this model, neutral atom ionization, re‐integration and accumulation of electrons and ions, photoelectric emission of electrons from the surface of dust grains, as well as elastic and charging collisions have also been considered. The effective dielectric constant in the presence of dust grains has been constructed. The effect of temporal growth of dust grains on various plasma parameters for different values of the dust density has been explored. The variation of the beam width with the normalized channel of propagation has been observed for distinct dust densities and dust charge states. It is observed that the non‐linearity induced by the effective dielectric constant in the presence of dust grains increases the self‐filamentation of the beam, thus enhancing the effective critical power with the dust density. Some of the outcomes of our approach are in line with experimental observations. These outcomes may be useful for explaining space and laboratory plasma experiments as well as for future studies in complex plasmas.  相似文献   

16.
Based on the Generalized Master Equation Model, the contribution of slow particle emission is considered in the present paper. In order to take account of the distinction between the emission of fast and of slow particles, two assumptions have been introduced:1) Only the direction of the emission of the fast particle is correlated with the incident direction, the direction of the emission of the slow particle is isotropic.2) The energy distribution of the slow particles in an exciton state corresponds to the Maxwell distribution. The calculated results fit the experimental data of (n, n′) and (α,P) reactions rather well even at backward angles.  相似文献   

17.
Structural, elastic, electronic and thermal properties of the MAX phase Nb2SiC are studied by means of a pseudo-potential plane-wave method based on the density functional theory. The optimized zero pressure geometrical parameters are in good agreement with the available theoretical data. The effect of high pressure, up to 40 GPa, on the lattice constants shows that the contractions along the c-axis were higher than those along the a-axis. The elastic constants Cij and elastic wave velocities are calculated for monocrystal Nb2SiC. Numerical estimations of the bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, average sound velocity and Debye temperature for ideal polycrystalline Nb2SiC aggregates are performed in the framework of the Voigt-Reuss-Hill approximation. The band structure shows that Nb2SiC is an electrical conductor. The analysis of the atomic site projected densities and the charge density distribution shows that the bonding is of covalent-ionic nature with the presence of metallic character. The density of states at Fermi level is dictated by the niobium d states; Si element has a little effect. Thermal effects on some macroscopic properties of Nb2SiC are predicted using the quasi-harmonic Debye model, in which the lattice vibrations are taken into account. The variations of the primitive cell volume, volume expansion coefficient, bulk modulus, heat capacity and Debye temperature with pressure and temperature in the ranges of 0-40 GPa and 0-2000 K are obtained successfully.  相似文献   

18.
19.
Adsorption of charged colloidal particles to oppositely charged surfaces is usually an irreversible process. The interaction between a pair of particles can be modeled with an exponentially decaying potential originating from double layer interactions. This work explored the effect of the Debye length on monolayer structures using the integral-equation theory which was successfully developed based on a binary-mixture approximation to include the effect of particle size polydispersity. The theoretical results from the integral equations with a Percus-Yevick closure showed that upon increasing the Debye length, the radial distribution functions, g(r), as well as the structure factor, S(k), decreased, in good agreement with simulation results. When the effect of size distributions was investigated, the prominent peak of the radial distribution function increased non-linearly with the product κσav, which followed the same trend as was reported for the case of the jamming coverage of the monolayer film.  相似文献   

20.
The phenomenon of excited state twisted intramolecular charge transfer (TICT) process in N,N-dimethylaminonaphthyl-(acrylo)-nitrile (DMANAN) has been reported on the basis of steady-state absorption and fluorescence spectroscopy in combination with quantum chemical calculations. The absorption and fluorescence characteristics of DMANAN in solvents of different polarity reveal the presence of a single species in the ground state which forms the intramolecular charge transfer state upon photoexcitation. The observed dual fluorescence is assigned to a high-energy emission from the locally excited or the Franck-Condon state and the red-shifted emission from the charge transfer (CT) state. In polar protic solvents, hydrogen-bonding interaction on CT emission has been established from the linear dependency of the position of the low-energy emission maxima on hydrogen-bonding parameter (α). The experimental findings have been correlated with the theoretical results based on TICT model obtained at density functional theory (DFT) level. The theoretical potential energy surface for the first excited state along both the donor and acceptor twist coordinates in the gas phase obtained by time dependent density functional theory (TDDFT) method and in polar solvent by time dependent density functional theory-polarized continuum model (TDDFT-PCM) method predicts well the experimental spectral properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号