首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
F. Peng  D. Hui 《Annalen der Physik》2011,523(5):417-422
We study the coherent state excitation of spins in square nanodots induced by a magnetic microwave field. We present a new mechanism of spin reversal in nanodots. That is, the microwave field directly induces the reversal of the coherent‐state spins instead of indirectly through the magnetic vortex. We obtain the space distribution of coherent‐state spins in terms of a quantum theory, and calculate the time of spin reversal. This spin‐reversal process may be used to serve as a storage mechanism of binary information.  相似文献   

2.
The magnetic structure and the processes of magnetization reversal of individual cobalt nanodots and arrays of cobalt nanodots have been studied using the magneto-optical Kerr effect and magnetic force microscopy. Arrays of nanodots have been prepared by ion etching from a continuous cobalt film. Magnetic anisotropy is induced during deposition of the cobalt films. The nanodots have the diameter d = 600 nm and the period varying from 1.5d to 3.0d. Magnetic force microscopy images have shown that the induced magnetic anisotropy affects the orientation of magnetization of noninteracting nanodots and the direction of displacement of the magnetic vortex center in the nanodots coupled by the dipole-dipole interaction.  相似文献   

3.
Isolated Ni nanoparticles were studied in situ by atomic and magnetic force microscopy in the presence of an additional external field up to 300 Oe. By comparing topographic and magnetic images, and also by computer modeling of magnetic images, it was established that particles smaller than 100 nm are single-domain and easily undergo magnetic reversal in the direction of the applied external magnetic field. For large magnetic particles, the external magnetic field enhances the magnetization uniformity and the direction of total magnetization of these particles is determined by their shape anisotropy. Characteristics of the magnetic images and magnetic reversal of particles larger than 150 nm are attributed to the formation of a vortex magnetization structure in these particles. Fiz. Tverd. Tela (St. Petersburg) 40, 1277–1283 (July 1998)  相似文献   

4.
The switching behavior of submicron circular Permalloy nanomagnets has been investigated. Electron holography provides a magnetic resolution of down to 10 nm. This allows us to observe in detail the switching and to measure the induction within single nanodots with diameters down to 150 nm at a thickness of 6 nm. Particles of these dimensions show a single domain state during the whole switching process which takes place at external fields of only a few 100 A/m. For larger or thicker particles the magnetization reversal runs via the formation of a C state or an intermediate vortex state.  相似文献   

5.
The magnetic vortex with in-plane curling magnetization and out-of-plane magnetization at the core is a unique ground state in nanoscale magnetic elements. This kind of magnetic vortex can be used, through its downward or upward core orientation, as a memory unit for information storage, and thus, controllable core switching deserves some special attention. Our analytical and micromagnetic calculations reveal that the origin of vortex core reversal is a gyrotropic field. This field is induced by vortex dynamic motion and is proportional to the velocity of the moving vortex. Our calculations elucidate the physical origin of the vortex core dynamic reversal, and, thereby, offer a key to effective manipulation of the vortex core orientation.  相似文献   

6.
The arrangement effects of triangular defects on the magnetization configurations and switching process of a permalloy disk are investigated by micromagnetic simulations. For the case of one defect, the vortex is nucleated via the S state (W state) as the direction of the triangular defect is parallel (perpendicular) to the orientation of the external field. For the case of two defects, two types of switching processes are found dependent on their arrangement. For the two triangular defects with the same direction, the reversal occurs via formation, pinning, depinning and annihilation of the vortex state, however, for the two triangular defects with the opposite directions, the reversal is realized by formation and annihilation of the double-vortex state. The nucleation field for the disk with a triangular defect is more sensitive to the defect position than the case of a circular (square) defect, and it shows different variation trends for different triangular directions. The chirality of the vortex state nucleated in the reversal process can be controlled by the triangular defect.  相似文献   

7.
The authors use micromagnetic simulation to investigate the magnetization reversal process of a new ferromagnetic submicron dot structure composed of a lateral gradient magnetization. The reversal process in this new structure begins at the both edges along and is perpendicular to the applied magnetic field due to introducing a demagnetizing field from the interface of the magnetization gradient. This leads to a two-stage nucleation process. Based on the analytical results, a novel submicron structure with a quarter of lateral gradient magnetization is proposed to control the chirality of a vortex, which is important for applications that use the vortex's chirality.  相似文献   

8.
孙璐  火炎  周超  梁建辉  张祥志  许子健  王勇  吴义政 《物理学报》2015,64(19):197502-197502
利用上海光源软X射线谱学显微光束线站(STXM)并结合X射线的磁圆二色效应, 我们对方形、圆形和三角形的Ni80Fe20薄膜微结构中的磁涡旋结构进行了定量实验观测, 并利用同步辐射光源的元素分辨特性, 分别在Fe和Ni的L3吸收边对涡旋磁结构进行了观测. 我们还对磁涡旋中磁矩的分布进行了定量分析, 发现实验结果与微磁学模拟结果完全符合.  相似文献   

9.
Using micromagnetic simulations, we investigated the magnetic states and switching processes of Co nanorings with lateral dimensions of 200 nm. We propose a special geometry of nanorings that adopts different Reuleaux triangular shapes. Reuleaux's triangles (RT) combine both the equilateral triangle and circular geometries. We studied the magnetic spin configurations of individual nanorings by varying the thickness and geometry of the nanomagnets. Our results demonstrated that in most nanomagnets exhibiting a thickness of less than 4 nm, there exists an onion-type state, which precedes either a twisted, double twisted, or cardioid state, when studying the magnetization reversal process. The hysteresis loops and magnetic states found in these RTs are compared with circular nanorings.  相似文献   

10.
Measurements are reported on the magnetization reversal in submicron magnetic rings fabricated by high-resolution electron beam lithography and lift-off from cobalt thin films. For all dimensions investigated, with diameters of 300-800 nm and a thickness of 10-50 nm, the flux closure state is the stable magnetization configuration. However, with increasing diameter and decreasing film thickness a metastable near single domain state can be obtained during the reversal process in an in-plane applied field.  相似文献   

11.
The magnetic properties of nanodisks packed into square arrays with various numbers of elements in the face have been studied. It has been shown that the vortex nucleation field oscillates with increasing number of nanodisks; the oscillation behavior depends on the nanodisk thickness. The synchronism of the vortex state formation varies with increasing number of nanodisks. The effect of the magnetostatic interaction of nanodisks on the critical fields of magnetization reversal has been estimated for the cases of vortex and single-domain states.  相似文献   

12.
Ni80Fe20 nanodots in square arrays of irregular shape (C1h(m) and x-, y-translations symmetry) and circular shape (D4h (4/mmm)) nanodots of the same area were fabricated under controlled exposure conditions by e-beam lithography, ion beam sputtering coating and further lift-off. The center-to-center nearest dot distances was 700 nm in all the measured arrays. An unpatterned film was fabricated in the same IBS batch for comparison purposes. Structures and magnetic properties were characterized using AFM, SEM and high-sensitivity focused magneto-optical Kerr effect (MOKE). The mechanism of the magnetization reversal of arrays is discussed in two different scenarios: vortex and single-domain. It has been shown that circular dots reverse only through vortex configuration whereas the irregular does either via single-domain and vortex configuration, depending of the dot size. Variable domain phases are confirmed by OOMMF (Object Oriented Micromagnetic Framework) micromagnetic simulations.  相似文献   

13.
The results of research into the behavior of the magnetic structure inherent to spherical ferromagnetic nanoparticles with radii of 5–30 nm are presented. The behavioral features are investigated in an external magnetic field by means of computer modeling. The hysteresis loops and formation of the vortex structure of magnetization are analyzed using particles with different sizes. The size effect of changes in the magnetization symmetry, which is analogous to phase transitions of the second kind, is established. The magnetic moments of spherical iron nanoparticles with radii of 5–30 nm are calculated. Calculations are performed by means of the Nmag micromagnetic simulation package.  相似文献   

14.
We present an ultrafast route for a controlled, toggle switching of magnetic vortex cores with ultrashort unipolar magnetic field pulses. The switching process is found to be largely insensitive to extrinsic parameters, like sample size and shape, and it is faster than any field-driven magnetization reversal process previously known from micromagnetic theory. Micromagnetic simulations demonstrate that the vortex core reversal is mediated by a rapid sequence of vortex-antivortex pair creation and annihilation subprocesses. Specific combinations of field-pulse strength and duration are required to obtain a controlled vortex core reversal. The operational range of this reversal mechanism is summarized in a switching diagram for a 200 nm Permalloy disk.  相似文献   

15.
矩形磁性纳米点动力学反磁化过程的微磁学研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用微磁学模拟方法研究了初始态为C形磁结构的矩形CoFe纳米点在方波脉冲场作用下的动力学反磁化过程.研究发现,随着脉冲场强的增强,磁体的反磁化模式发生了改变.当场强较弱时反磁化过程通过畴壁移动-单涡旋的形成和移动来完成;当场强较大时反磁化过程模式转变为畴壁移动-双涡旋的形成与移动;在更强的场强下反磁化过程通过畴壁的移动-多涡旋的形成与湮没来实现.由于反磁化模式随场强的变化而改变,反磁化时间随场强的增大出现振荡变化现象. 关键词: 动力学反磁化过程 反磁化时间 微磁学模拟  相似文献   

16.
Arrays of elliptical particles with aspect ratio 1:3 and short axes 50, 100 and 150 nm were prepared by electron-beam lithography and ion-beam milling of epitaxial (0 0 1)Fe films of thicknesses 10 and 20 nm. The domain state of an individual particle imaged by magnetic force microscopy in zero field after demagnetization was observed to change from being bi-domain or multidomain (MD) to stable single domains (SD) as the lateral size and film thickness were decreased. The critical size for SD formation was found to be close to the actual lateral sizes of 100 nm×300 nm and 150 nm×450 nm for the thicknesses of 20 and 10 nm, respectively. Only in the 10 nm thick ellipses of lateral size 100 nm×300 nm, the magnetization reversal may take place through coherent rotation. For all other investigated samples, the experimental switching field is lower than what would be required for this process.  相似文献   

17.
We investigate numerically the effects of the dipolar interactions on magnetic properties in small ferromagnetic nanorings using a Monte Carlo technique. Our simulated results show that the strength of dipolar interaction in the magnetic nanoring has an important influence on the magnetization reversal processes and further the coercivity and the remanence. As the dipolar interaction increases, the transition of magnetization reversal processes from the onion-rotation state to the vortex state can occur, which results in an increase in coercivity and a decrease in remanence. On the other hand, it is found that the coercivity and the remanence depend more strongly on the strength of dipolar coupling for the relatively small size nanoring than for the large size nanoring in width. This can be attributed to the stable vortex state without core in smaller width nanoring in contrast to the metastable vortex state with core in larger width nanoring, induced by strong dipolar interactions. Additionally, the temperature dependence of coercivity and remanence in magnetic nanoring is also studied at a fixed dipolar interaction.  相似文献   

18.
Magnetic force microscopy was applied to study the magnetic properties of Co dot microstructures. The high density magnetic dot arrays were fabricated using nanolithographic techniques on GaAs substrates. The ferromagnetic Co dots were found to be in a single domain state for Co film thicknesses of 7 nm and 17 nm. The magnetization of the as-prepared Co dot array was found to be in a non-uniform state. After applying a magnetic field the Co dots are in a uniform magnetization state. Induced switching of the magnetization of single Co dots by the stray field of the probing tip using an additionally applied in-situ magnetic field has been demonstrated.  相似文献   

19.
The local detection of magnetic domains of isolated 10 nm Fe_3O_4 magnetic nanoparticles(MNPs) has been achieved by field-variable magnetic force microscopy(MFM) with high spatial resolution.The domain configuration of an individual MNP shows a typical dipolar response.The magnetization reversal of MNP domains is governed by a coherent rotation mechanism, which is consistent with the theoretical results given by micromagnetic calculations.Present results suggest that the field-variable MFM has great potential in providing nanoscale magnetic information on magnetic nanostructures,such as nanoparticles, nanodots, skyrmions, and vortices, with high spatial resolution.This is crucial for the development and application of magnetic nanostructures and devices.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号