首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A spray flamelet/progress variable approach is developed for use in spray combustion with partly pre-vaporised liquid fuel, where a laminar spray flamelet library accounts for evaporation within the laminar flame structures. For this purpose, the standard spray flamelet formulation for pure evaporating liquid fuel and oxidiser is extended by a chemical reaction progress variable in both the turbulent spray flame model and the laminar spray flame structures, in order to account for the effect of pre-vaporised liquid fuel for instance through use of a pilot flame. This new approach is combined with a transported joint probability density function (PDF) method for the simulation of a turbulent piloted ethanol/air spray flame, and the extension requires the formulation of a joint three-variate PDF depending on the gas phase mixture fraction, the chemical reaction progress variable, and gas enthalpy. The molecular mixing is modelled with the extended interaction-by-exchange-with-the-mean (IEM) model, where source terms account for spray evaporation and heat exchange due to evaporation as well as the chemical reaction rate for the chemical reaction progress variable. This is the first formulation using a spray flamelet model considering both evaporation and partly pre-vaporised liquid fuel within the laminar spray flamelets. Results with this new formulation show good agreement with the experimental data provided by A.R. Masri, Sydney, Australia. The analysis of the Lagrangian statistics of the gas temperature and the OH mass fraction indicates that partially premixed combustion prevails near the nozzle exit of the spray, whereas further downstream, the non-premixed flame is promoted towards the inner rich-side of the spray jet since the pilot flame heats up the premixed inner spray zone. In summary, the simulation with the new formulation considering the reaction progress variable shows good performance, greatly improving the standard formulation, and it provides new insight into the local structure of this complex spray flame.  相似文献   

2.
分别采用标量联合的概率密度函数方法、稳态火焰面模型、Euler非稳态火焰面模型和基于有限体积/Monte Carlo混合算法的完备PDF模型对钝体驻定的Sydney湍流扩散火焰HM1进行数值模拟,以比较不同燃烧模型的性能,并比较标量联合的概率密度函数方法和Euler非稳态火焰面模型对氮氧化物排放预测的差异.计算结果和实验数据的比较表明,采用概率密度函数方法计算化学反应可以得到更好的结果但计算量较大,而用火焰面模型求解计算量较小,在接近完全燃烧的情形下,其计算结果比较合理.  相似文献   

3.
采用标量概率密度函数(PDF)方法、稳态和非稳态火焰面模型三种方法对一个值班湍流CH_4/O_2/N_2射流扩散火焰(Sandia Flame D)进行数值计算,以比较不同燃烧模型的性能。PDF方法通过计算反应标量的PDF输运方程来得到标量分布,而火焰面模型只求解单标量混合物分数的PDF方程,组分和温度分布通过火焰面方程的求解或者火焰面数据库的插值得到。计算结果和实验数据对比表明PDF方法计算结果最好但计算量相当大,稳态火焰面模型则反之。综合而言,非稳态火焰面模型的预测结果相对稳态模型有了非常大的改进,而计算量仍然容易接受,非常适合工程应用。  相似文献   

4.
5.
Steady flamelet models have been widely used in turbulent combustion simulations because of their simplicity, efficiency, yet physics-based nature. They are, however, unable to handle slow chemical and physical processes such as pollutant formation. Unsteady flamelet models have been shown to be able to provide accurate predictions especially for pollutants, but their implementations are usually not as straightforward as for the steady models, and additional assumptions are involved. One relatively straightforward approach of implementing the unsteady flamelet model is to tabulate the time history of unsteady flamelet solutions. This often leads to flamelet libraries of large sizes because of increased dimensions for the new physics. The purpose of this paper is to introduce a new and efficient approach of tabulating unsteady flamelet solutions in the LES of complex systems, here demonstrated in simulations of a cross-flow-jet combustion system. This approach employs Taylor series expansions to represent the time history of unsteady flamelet solutions. Compared with other approaches, the new approach retains the efficiency and simplicity benefits of steady flamelet models but possesses the accuracy of unsteady flamelet models. Various issues associated with the formulation and implementation of this approach are discussed, which include the selection of the base solution, the order of accuracy of the expansion, and the treatment of simultaneous wall heat losses and heat transfer through thermal radiation. This approach is validated in large eddy simulations of a cross-flow-jet combustion system. Good agreement with experiments is obtained for both temperature and NO concentration, as well as for major species.  相似文献   

6.
湍流分层燃烧广泛应用于工业燃烧装置,但是目前还比较缺乏适用于湍流分层燃烧的高精度数值模型。本文利用直接数值模拟数据库,对高Karlovitz数分层射流火焰的小火焰模型表现进行了先验性评估。考虑了两种小火焰模型,一种是基于自由传播层流预混火焰的小火焰模型M1,另一种是基于分层对冲小火焰的小火焰模型M2。研究发现M1和M2在c-Z空间的结果与直接数值模拟在定性上是一致的。在物理空间,M2对过程变量反应速率脉动值的预测结果要优于M1.  相似文献   

7.
The combustion characteristics for the turbulent diffusion flames using the unsteady flamelet concept have been numerically investigated. The Favre-averaged Navier–Stokes equations are solved by a finite volume method of SIMPLE type that incorporates the laminar flamelet concept with a modified k ? ε turbulence model. The NO formation is estimated by solving the Eulerian particle transport equations in a postprocessing mode. Two test problems are considered: CH4/H2/N2 jet flame and CH4/H2 stabilised bluff body flame. The temperature and species profiles are well captured by the flamelet model. Two different chemical mechanisms (GRI 2.11 and 3.0) give nearly identical results for temperature and species except NO. The GRI 3.0 gives significantly higher NO levels compared to the GRI 2.11. This is mainly attributed to the difference in NO formation by the prompt mechanism. The NO formation is sensitive to the number of flamelet particles. The NO levels for two test flames do not change when the flamelet particle number exceeds six.  相似文献   

8.
The application of detailed chemistry to the computational fluid dynamics simulation of combustion process in diesel engines has many potentials, including the possibility to predict auto-ignition, diffusion flame structure, stabilisation and soot formation in a wide range of operating conditions, also taking into account the effects of different fuel types. Among the approaches that were proposed over the years, the ones that are mostly used in practical calculations can be divided into two main categories: the first assumes each cell to be a well-stirred reactor, while the second employs the flamelet assumption to describe both auto-ignition and turbulent diffusion flame propagation. Despite the fact that both types of model have been widely validated over the years, a detailed comparison between them appears to be very useful in order to understand better the relevant parameters governing auto-ignition, flame stabilisation and the formation of pollutant emissions. This work is focused on a comparison of two different combustion models that were recently implemented by the authors in an open-source code. The first assumes each cell to be a homogeneous reactor and neglects interaction between turbulence and chemistry, while in the second, multiple laminar flamelets are used to represent the structure of a turbulent diffusion flame. Suitable techniques for online reaction rate tabulation and chemical mechanism reduction are also incorporated, to make the use of bigger mechanisms possible (up to 150 species). The two models are compared and validated by simulating constant-volume diesel combustion in a wide range of operating conditions, including variations of ambient temperature and oxygen concentration. Comparison between the computed and experimental data on flame structure, auto-ignition and flame lift-off enables an understanding of the main relevant differences between the models in the way both auto-ignition and flame stabilisation processes are predicted.  相似文献   

9.
For non-premixed combustion, the steady laminar flamelet model (SLFM) and flamelet/progress variable approach (FPVA) are two popular methods for tabulating flamelet manifolds. Even if the two methods are used to tabulate and parameterize the same flamelet database, their results sometimes differ in the subsequent simulation. In this work, a novel perspective is provided to assess the performance of the SLFM and FPVA. Both approaches are compared with respect to their capabilities to capture tangential diffusion (TD) of the thermochemical state variables along iso-surfaces of mixture fraction. The relevance of TD effects is identified using generalized flamelet equations and regimes by comparing flamelet solutions with and without TD terms to a FTC (full transport and chemistry) solution of a well-known non-premixed coflow flame. It is found that TD effects can play an important role in entire mixture fraction space, even in the classical flamelet regime. This suggests that the ability to characterize TD effects is an important performance indicator for tabulation strategies. Thereafter, an a priori analysis is conducted comparing the results from the FPVA and SLFM (using the same flamelet database) with the FTC results. The results show that the FPVA is able to more accurately describe the thermochemical state and the flame structure than the SLFM. For a more detailed assessment of the two tabulation strategies, the TD terms reconstructed from the FPVA and SLFM are compared to those from the FTC results. It is found that the FPVA can capture a significant portion of TD effects, while the SLFM can hardly characterize TD effects. This particular capability allows the FPVA to describe chemistry-transport interaction and flame structure more accurately than the SLFM.  相似文献   

10.
This paper assesses the Presumed Mapping Function (PMF) approach in the context of the Stationary Laminar Flamelet Modelling (SLFM) of a reacting Double Scalar Mixing Layer (DSML). Starting from a prescribed Gaussian reference field, the PMF approach provides a presumed Probability Density Function (PDF) for the mixture fraction that is subsequently employed to close the Conditional Scalar Dissipation Rate (CSDR) upon doubly-integrating the homogeneous PDF transport equation. The PMF approach is unique in its ability to yield PDF and CSDR distributions that capture the effect of multiple fuel injections of different composition. This distinct feature overcomes the shortcomings of the classical SLFM closures (the β-distribution for the PDF and the counterflow solution for the CSDR). The current study analyses the impact of the binary (two-stream) and trinary (three-stream) PMF approaches on the structure of laminar flamelets in a DSML formed by the mixing of a fuel stream and an oxidiser stream separated by a pilot. The conditions of a partially-premixed methane/air piloted jet flame are considered. A parametric assessment is performed by varying the local mixing statistics and the findings are compared to those of the classical SLFM approach. Further, the influence of the PMF approach on flamelet extinction and transport by means of differential diffusion is thoroughly investigated. It is shown that the trinary PMF approach captures the influence of the pilot stream as it is capable of yielding bimodal CSDR and trimodal PDF distributions. It is further demonstrated that, when the influence of the pilot is significant, flamelets generated using the trinary CSDR closure extinguish at higher strain levels compared to flamelets generated using the binary and counterflow closures. Lastly, it is shown that the trinary PMF approach can be critical for accurate SLFM computations of DSMLs when differential diffusion effects are important.  相似文献   

11.
The flamelet/progress variable approach (FPVA) has been proposed by Pierce and Moin as a model for turbulent non-premixed combustion in large-eddy simulation. The filtered chemical source term in this model appears in unclosed form, and is modeled by a presumed probability density function (PDF) for the joint PDF of the mixture fraction Z and a flamelet parameter λ. While the marginal PDF of Z can be reasonably approximated by a beta distribution, a model for the conditional PDF of the flamelet parameter needs to be developed. Further, the ability of FPVA to predict extinction and re-ignition has also not been assessed. In this paper, we address these aspects of the model using the DNS database of Sripakagorn et al. It is first shown that the steady flamelet assumption in the context of FPVA leads to good predictions even for high levels of local extinction. Three different models for the conditional PDF of the flamelet parameter are tested in an a priori sense. Results obtained using a delta function to model the conditional PDF of λ lead to an overprediction of the mean temperature, even with only moderate extinction levels. It is shown that if the conditional PDF of λ is modeled by a beta distribution conditioned on Z, then FPVA can predict extinction and re-ignition effects, and good agreement between the model and DNS data for the mean temperature is observed.  相似文献   

12.
This study has been mainly motivated to assess computationally and theoretically the conditional moment closure (CMC) model and the transient flamelet model for the simulation of turbulent nonpremixed flames. These two turbulent combustion models are implemented into the unstructured grid finite volume method that efficiently handles physically and geometrically complex turbulent reacting flows. Moreover, the parallel algorithm has been implemented to improve computational efficiency as well as to reduce the memory load of the CMC procedure. Example cases include two turbulent CO/H2/N2 jet flames having different flow timescales and the turbulent nonpremixed H2/CO flame stabilized on an axisymmetric bluff-body burner. The Lagrangian flamelet model and the simplified CMC formulation are applied to the strongly parabolic jet flame calculation. On the other hand, the Eulerian particle flamelet model and full conservative CMC formulation are employed for the bluff-body flame with flow recirculation. Based on the numerical results, a detailed discussion is given for the comparative performances of the two combustion models in terms of the flame structure and NO x formation characteristics.  相似文献   

13.
Tabulated chemistry models allow to include detailed chemistry effects at low cost in numerical simulations of reactive flows. Characteristics of the reactive fluid flows are described by a reduced set of parameters that are representative of the flame structure at small scales so-called flamelets. For a specific turbulent combustion configuration, flamelet combustion closure, with proper formulation of the flame structure can be applied. In this study, flamelet generated manifolds (FGM) combustion closure with progress variable approach were incorporated with OpenFOAM® source code to model combustion within compression ignition engines. For IC engine applications, multi-dimensional flamelet look-up tables for counter flow diffusive flame configuration were generated. Source terms of non-premixed combustion configuration in flamelet domain were tabulated based on pressure, temperature of unburned mixture, mixture fraction, and progress variable. A new frozen flamelet method was introduced to link one dimensional reaction diffusion space to multi-dimensional Computational Fluid Dynamics (CFD) physical space to fulfill correct modelling of thermal state of the engine at expansion stroke when charge composition was changed after combustion and reaction rates were subsided. Predictability of the developed numerical framework were evaluated for Sandia Spray A (constant volume vessel), Spray B (light duty optical Diesel engine), and a heavy duty Diesel engine experiments under Reynolds averaged Navier Stokes turbulence formulation. Results showed that application of multi-dimensional FGM combustion closure can comprehensively predict key parameters such as: ignition delay, in-cylinder pressure, apparent heat release rate, flame lift-off , and flame structure in Diesel engines.  相似文献   

14.
氢气扩散火焰中辐射源项湍流脉动特征的PDF模拟   总被引:1,自引:0,他引:1  
采用κ-ε湍流模型、标量联合的概率密度函数(PDF)输运方程和层流火焰面模型相结合,模拟氢气自由扩散火焰中辐射源项湍流脉动特征.给出了主燃区内辐射源项湍流脉动的频率图.辐射源项的样本点分布集中,大约95%以上的样本落在其系综的±3倍方差以内,频谱图为单峰.  相似文献   

15.
Strained two-phase pulverised coal flames in a counterflow configuration are investigated numerically. Three operating conditions with different coal-to-primary-air ratios and inlet velocities were evaluated in order to establish different flame regimes. At first, the two-phase flow of the fully resolved reference cases is calculated solving the transport equation for the species and directly evaluating the reaction rates. Different flame structures are identified using the heat release rate and the chemical explosive mode as markers, showing that complex structures with a combination of lean premixed and non-premixed flames can be observed in strained counterflow coal flames. In addition to the fully resolved simulation, the suitability of the Flamelet-Progress Variable (FPV) model is investigated. Both premixed and non-premixed tables are employed. At first, the suitability of the look-up tables is evaluated by means of an a priori analysis, using the fully resolved simulations as reference solutions, showing that the non-premixed flamelet table correctly predicts the structure of the strained coal flames, while the premixed table shows sensible deviations in terms of temperature and species, especially at rich conditions. Finally, the a posteriori analysis shows that the fully coupled FPV model with a non-premixed flamelet look-up table can accurately predict strained coal flames.  相似文献   

16.
Monte Carlo simulations of joint probability density function (PDF) approaches have been developed in the past largely with Reynolds averaged Navier Stokes (RANS) applications. Current interests are in the extension of PDF approaches to large eddy simulation (LES). As LES resolves accurately the large scales of turbulence in time, the Monte Carlo simulation and the flow field need to be tightly coupled. A tight coupling can be achieved if the consistency between the scalar field solution obtained via finite-volume (FV) methods and that from the stochastic solution of the PDF is ensured. For nonpremixed turbulent flames with two distinct streams, the local reactive mixture is described by the mixture fraction. A Eulerian Monte Carlo method is developed to achieve a second-order accuracy in the instantaneous filtered mixture fraction that is consistent with the corresponding FV. The performances of the proposed scheme are extensively evaluated using a one-dimensional model. Then, the scheme is applied to two cases with LES. The first one is a non-reacting mixing flow of two different fluids. The second case is the Sandia piloted turbulent flame D with a steady state flamelet model. Both results confirm the consistency of the proposed method to the level of filtered mixture fraction.  相似文献   

17.
The laminar flamelet model in combination with joint probability density function transport equation of mixture fraction and turbulence frequency is used to simulate turbulent jet diffusion flames of hydrogen. The frequency distributions of radiative source terms are calculated for four important infrared bands of water vapor. The results show that, for the given ensemble, about 95% samples of radiative source term for each band locate within the region of ±3.0 standard deviation of the mean radiative source term. Due to the different relation between band intensity parameters and temperature for every band, the symmetrization of frequency distributions for each band is different.  相似文献   

18.
拉伸流扩散火焰面结构及熄火的研究   总被引:8,自引:2,他引:6  
对拉伸层流扩散火焰面进行了数值模拟,考察了在以往湍流燃烧的火焰面模型中,假定Lewis数等于1的可靠性,研究了不同分子扩散和火焰辐射对火焰面结构、氮氧化物排放和熄火临界的影响.计算结果表明,Lewis数等于1的假定在火焰面结构的计算中存在很大的近似性,火焰辐射可以引起低拉伸条件下的熄火临界.  相似文献   

19.
小火焰模型在贫燃预混火焰中的研究   总被引:4,自引:0,他引:4  
由层流小火焰库引入详细化学反应机理,通过简化的PDF方法计算组分浓度、平均温度和密度等变量,以钝体火焰稳定燃烧室和某燃气轮机上的燃烧室为例,模拟甲烷/空气贫燃条件下预混燃烧的平均火焰位置和火焰厚度,计算结果与实验结果吻合良好,这表明此方法能够较好计算出平均湍流火焰的主要特征。  相似文献   

20.
The unsteady flamelet/progress variable approach has been developed for the prediction of a lifted flame to capture the extinction and re-ignition physics. In this work inclusion of the time variant behavior in the flamelet generation embedded in the large eddy simulation technique, allows better understanding of partially premixed flame dynamics. In the process sufficient simulations to generate unsteady laminar flamelets are performed, which are a function of time. These flamelets are used for the generation of the look-up table and the flamelet library is produced. This library is used for the calculation of temperature and other species in the computational domain as the solution progresses. The library constitutes filtered quantities of all the scalars as a function of mean mixture fraction, mixture fraction variance and mean progress variable. Mixture fraction and progress variable distributions are assumed to be β-PDF and δ-PDF respectively. The technique used here is known as the unsteady flamelet progress variable (UFPV) approach. One of the well known lifted flames is considered for the present modeling which shows flame lift-off. The results are compared with the experimental data for the mixture fraction and temperature. Lift off height is predicted from the numerical calculations and compared with the experimentally given value. Comparisons show a reasonably good agreement and the UFPV combustion model appears to be a promising technique for the prediction of lifted and partially premixed flames.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号