首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Discrete Co catalytic nanoparticles with small diameters are obtained by pulsed vacuum arc evaporation on Si/SiO2 substrates, which are used for the growth of isolated single-walled carbon nanotubes (SWNTs) by an ethanol chemical vapor deposition approach (CVD). The distributions of catalytic nanoparticles change with the number of arc pulses, which allows control of the nanotubes formation. We find that an increase of ethanol pressure during CVD growth can change SWNTs from isolated ones into bundles. A new growth mechanism which combines a tip and base model for SWNT growth has been tentatively proposed. It is suggested that the small size catalytic particles prepared by pulsed arc evaporation have a potential advantage for small diameter SWNT growth. PACS 78.67.Ch; 78.67.Bf; 78.67.-n; 81.07.De; 61.46.-w  相似文献   

2.
Single-walled carbon nanotubes (SWNTs) have been grown on silicon nanowires (SiNWs) by ethanol chemical vapor deposition (CVD) with Co catalysts. We have found that a surface SiOx layer of SiNWs is necessary for the formation of active Co catalysts. In fact, the yield of the SWNT/SiNW heterojunctions gradually decreases as the thickness of the surface SiOx layer decreases. Since thin SiNWs are transparent to an electron beam, the Co nanoparticles on SiNWs can be easily observed as well as SWNTs by TEM. Therefore, the relationship between the diameters of each SWNT and its catalyst nanoparticle has been investigated. The diameters of SWNTs are equal to or slightly smaller than those of the catalyst nanoparticles.  相似文献   

3.
A theoretical model for the growth of single-wall carbon nanotubes produced by metal-catalyzed decomposition of hydrocarbons and fullerenes is presented. The growth process is treated as a thermodynamic equilibrium between carbon in the gas phase and carbon in the nanotube. The minimum possible nanotube diameters based on several published experimental conditions are calculated by combining the free energy of the reaction with an equation derived from elastic theory. The model predicts the possibility of generating nanotubes with extremely small diameters that are smaller than in the corresponding experiments. Received: 18 July 2001 / Accepted: 19 November 2001 / Published online: 4 March 2002  相似文献   

4.
Multiwall carbon nanotubes were synthesized on the FeCoCaO and FeMoCaO catalysts by RF-CCVD at 750 °C, 850 °C and 950 °C, using acetylene as the carbon source. Analytically, it was found that the nanotubes are well crystallized, with outside diameters ranging between 10 and 60 nm and a ratio of the outside to the inside diameters of 2 to 3. The nanotubes did not present amorphous carbon and their purity increased with the temperature of synthesis. A relatively large number of metallic nanoparticles of various dimensions and shapes encapsulated inside the nanotubes were observed by TEM in most of the nanotube samples.  相似文献   

5.
The thermal properties of carbon nanotubes are directly related to their unique structure and small size. Because of these properties, nanotubes may prove to be an ideal material for the study of low-dimensional phonon physics, and for thermal management, both on the macro- and the micro-scale. We have begun to explore the thermal properties of nanotubes by measuring the specific heat and thermal conductivity of bulk SWNT samples. In addition, we have synthesized nanotube-based composite materials and measured their thermal conductivity. The measured specific heat of single-walled nanotubes differs from that of both 2D graphene and 3D graphite, especially at low temperatures, where 1D quantization of the phonon bandstructure is observed. The measured specific heat shows only weak effects of intertube coupling in nanotube bundling, suggesting that this coupling is weaker than expected. The thermal conductivity of nanotubes is large, even in bulk samples: aligned bundles of SWNTs show a thermal conductivity of >200 W/m K at room temperature. A linear K(T) up to approximately 40 K may be due to 1D quantization; measurement of K(T) of samples with different average nanotube diameters supports this interpretation. Nanotube–epoxy blends show significantly enhanced thermal conductivity, showing that nanotube-based composites may be useful not only for their potentially high strength, but also for their potentially high thermal conductivity. Received: 17 October 2001 / Accepted: 3 December 2001 / Published online: 4 March 2002  相似文献   

6.
Synthesis and morphology of boron nitride nanotubes and nanohorns   总被引:1,自引:0,他引:1  
Boron nitride (BN) nanotubes have been synthesized by evaporating a mixture of boron and gallium oxide in the presence of ammonia gas. The synthesized BN nanotubes exhibit a well-crystallized concentric structure with diameters less than 30 nm, and no carbon contamination or defects could be observed, while the BN nanotubes with large diameters usually show a number of defects. Some BN nanohorn structures could also be observed in the product. The carbon-free growth of BN nanotubes was explained based on the vapor–liquid–solid growth mechanism, and the catalytic activity of liquid gallium for BN one-dimensional growth was also demonstrated. Received: 16 April 2002 / Accepted: 25 May 2002 / Published online: 19 July 2002  相似文献   

7.
FeNi alloy nanoparticles with controllable sizes were attached on the multiwalled carbon nanotubes by adjusting the atomic ratio of metal to carbon in the mixed solution of nitrate with Fe:Ni=1:1 (atomic ratio) via wet chemistry. Transmission electron microscopy (TEM) and high-resolution TEM indicated that quasi-spherical FeNi alloy nanoparticles with sizes in the range 12-25 nm are obtained. FeNi alloy composed of major face center cubic (fcc) and minor body center cubic (bcc) structures, which is proved by the X-ray powder diffraction (XRD). Magnetization measured by vibrating sample magnetometer demonstrated that both the coercive force and saturation magnetizations decrease as the size of the FeNi alloy nanoparticles decreased. The chemical method is promising for fabricating FeNi alloy nanoparticles attached on carbon nanotubes for magnetic storage and ultra high-density magnetic recording applications.  相似文献   

8.
Effect of nickel,iron and cobalt on growth of aligned carbon nanotubes   总被引:8,自引:0,他引:8  
The effect of pure nickel, iron and cobalt on growth of aligned carbon nanotubes was systematically studied by plasma-enhanced hot-filament chemical vapor deposition. It is found that the catalyst has a strong effect on the nanotube diameter, growth rate, wall thickness, morphology and microstructure. Ni yields the highest growth rate, largest diameter and thickest wall, whereas Co results in the lowest growth rate, smallest diameter and thinnest wall. The carbon nanotubes catalyzed by Ni have the best alignment and the smoothest and cleanest wall surface, whereas those from Co are covered with amorphous carbon and nanoparticles on the outer surface. The carbon nanotubes produced from Ni catalyst also exhibit a reasonably good graphitization. Therefore, Ni is considered as the most suitable catalyst for growth of aligned carbon nanotubes. Received: 30 November 2001 / Accepted: 3 December 2001 / Published online: 4 March 2002  相似文献   

9.
Superconductivity in the single-walled carbon nanotubes is investigated. First, effect of diameter increasing on the clean systems critical temperature, Tc, is calculated. Then effect of impurity doping on the reduction of critical temperature Tc, of single-walled carbon nanotubes, is discussed. Our calculations illustrate that metallic zigzag single-walled carbon nanotubes have higher Tc than armchair single-walled carbon nanotubes with approximately same diameters and Tc decreases by increasing diameter. This can explain why superconductivity could be found in the small diameter single-walled carbon nanotubes. We found for the impurity doped systems, impurity in the strong scattering regime can decrease Tc significantly while in the weak scattering regime Tc is not affected by impurity doping.  相似文献   

10.
A series of carbon nanomaterials, particularly multi-walled carbon nanotubes (MWNT), are obtained as products from catalytic pyrolysis of the cross-linked phenol-formaldehyde resins with different ferrocene under inert atmosphere. The morphology and structure of the samples were evaluated by TEM and XRD techniques. CNTs morphology is dependent on the iron nanoparticles and their forms (Fe, Fe3C) resulted from ferrocene decomposition. The amount of nanotubes increases with iron content released from ferrocene catalyst during the pyrolysis process. Fe3C nanoparticles drive the nucleation and the growth of carbon nanotubes during the pyrolysis process. Long (up to microns) well-defined MWNTs with small defects, ropes and disordered carbon are representatives in the pyrolyzed resins composition.  相似文献   

11.
提出了透射电子显微镜(TEM)纳米云纹法的新技术,首次将该方法用于单根单壁碳纳米管的残余变形测量。纳米云纹由计算机显示器扫描线与碳纳米管束TEM图像干涉而成。该方法具有纳米级空间分辨率,可直接测量碳纳米管的力学性能。对TEM纳米云纹法的原理进行了详细的阐述,并利用不同管径的单壁碳管束产生了云纹。对直径为7.5nm的弯曲碳管束的残余变形进行测量,直接得到了其中一根直径为1.0nm的单壁碳管的残余变形场。实验结果证明了该方法的可行性。该方法为纳米尺度的碳管力学性能测量提供了新途径。  相似文献   

12.
A novel continuous process is used for production of carbon nanotubes (CNTs) by catalytic chemical vapor deposition (CVD) of methane on iron floating catalyst in situ deposited on MgO in a fluidized bed reactor. In the hot zone of the reactor, sublimed ferrocene vapors were contacted with MgO powder fluidized by methane feed to produce Fe/MgO catalyst in situ. An annular tube was used to enhance the ferrocene and MgO contacting efficiency. Multi-wall as well as single-wall CNTs was grown on the Fe/MgO catalyst while falling down the reactor. The CNTs were continuously collected at the bottom of the reactor, only when MgO powder was used. The annular tube enhanced the contacting efficiency and improved both the quality and quantity of CNTs.The SEM and TEM micrographs of the products reveal that the CNTs are mostly entangled bundles with diameters of about 10-20 nm. Raman spectra show that the CNTs have low amount of amorphous/defected carbon with IG/ID ratios as high as 10.2 for synthesis at 900 °C. The RBM Raman peaks indicate formation of single-walled carbon nanotubes (SWNTs) of 1.0-1.2 nm diameter.  相似文献   

13.
In2O3 nanowires have been successfully fabricated on a large scale from indium particles by thermal evaporation at 1030 °C. The as-synthesized products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM and TEM images show that these nanowires are uniform with diameters of about 60–120 nm and lengths of about 15–25 μm. XRD and selected-area electron diffraction analysis together indicate that these In2O3 nanowires crystallize in a cubic structure of the bixbyite Mn2O3 (I) type (also called the C-type rare-earth oxide structure). The growth mechanism of these nanowires is also discussed. Received: 29 June 2001 / Accepted: 28 September 2001 / Published online: 20 December 2001  相似文献   

14.
High-quality single-walled carbon nanotubes (SWNTs) are synthesized by chemical vapor deposition (CVD) of methane on silicon-dioxide substrates at controlled locations using patterned catalytic islands. With the synthesized nanotube chips, microfabrication techniques are used to reliably contact individual SWNTs and obtain low contact resistance. The combined chemical synthesis and microfabrication approaches enable systematic characterization of electron transport properties of a large number of individual SWNTs. Results of electrical properties of representative semiconducting and metallic SWNTs are presented. The lowest two-terminal resistance for individual metallic SWNTs (≈5 μm long) is ≈16.5 kΩ measured at 4.2 K. Received: 17 May 1999 / Accepted: 18 May 1999 / Published online: 14 July 1999  相似文献   

15.
In this paper we review the existing theoretical literature on hydrogen storage in single-walled nanotubes and carbon nanofibers. The reported calculations indicate a hydrogen uptake smaller than some of the more optimistic experimental results. Furthermore the calculations suggest that a variety of complex chemical processes could accompany hydrogen storage and release. Received: 24 August 2000 / Accepted: 15 November 2000 / Published online: 9 February 2001  相似文献   

16.
Self-assembly pyrolytic routes to large arrays (<2.5 cm2) of aligned CNx nanotubes (15–80 nm OD and <100 μm in length) are presented. The method involves the thermolysis of ferrocene/melamine mixtures (5:95) at 900–1000 °C in the presence of Ar. Electron energy loss spectroscopy (EELS) reveals that the N content varies from 2–10%, and can be bonded to C in two different fashions (double-bonded and triple-bonded nitrogen). The electronic densities of states (DOS) of these CNx nanotubes, using scanning tunneling spectroscopy (STS), are presented. The doped nanotubes exhibit strong features in the conduction band close to the Fermi level (0.18 eV). Using tight-binding and ab initio calculations, we confirm that pyridine-like (double-bonded) N is responsible for introducing donor states close to the Fermi Level. These electron-rich structures are the first example of n-type nanotubes. Finally, it will be shown that moderate electron irradiation at 700–800 °C is capable of coalescing single-walled nanotubes (SWNTs). The process has also been studied using tight-binding molecular dynamics (TBMD). Vacancies induce the coalescence via a zipper-like mechanism, which has also been observed experimentally. These vacancies trigger the organization of atoms on the tube lattices within adjacent tubes. These results pave the way to the fabrication of nanotube heterojunctions, robust composites, contacts, nanocircuits and strong 3D composites using N-doped tubes as well as SWNTs. Received: 10 October 2001 / Accepted: 3 December 2001 / Published online: 4 March 2002  相似文献   

17.
Highly oriented GaN nanowire arrays have been achieved by the catalytic reaction of gallium with ammonium. The resulting materials were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM) and selected-area electron diffraction (SAED). SEM images show that the resulting materials are nanowire arrays with a uniform length of about 10 μm. XRD, EDS, TEM and SAED indicate that the nanowire arrays are single-crystal hexagonal GaN with a wurtzite structure. They have diameters of 10 to 20 nm. Received: 2 October 2002 / Accepted: 7 October 2002 / Published online: 17 December 2002 RID="*" ID="*"Corresponding author. E-mail: wwwangjc@sina.com  相似文献   

18.
Nanotube growth during annealing of mechanically milled Boron   总被引:1,自引:0,他引:1  
Boron powder, finely ground in a tungsten carbide ball mill in an ammonia atmosphere, has been annealed at 1200 °C in flowing nitrogen to produce small quantities of cylindrical BN nanotubes, both as isolated individuals and grouped into ropes. Thick-walled conical BN tubes are abundant in specimens annealed for longer times, and their growth was catalysed once WC debris was converted into W metal particles. Some catalytic effect of small W nanoparticles could be necessary for nanotube formation, though no tip particles have been imaged here. Given the low temperature of mechanical milling and annealing, BN growth must involve surface diffusion and solid-state reconfiguration. It could be possible to engineer desirable physical and chemical properties by exploiting the variation in cylindrical versus conical BN structures as a function of annealing time. Received: 19 December 2001 / Accepted: 3 April 2002 / Published online: 19 July 2002 RID="*" ID="*"Corresponding author. Fax: +61-2/6125-8253, E-mail: john.fitzgerald@anu.edu.au  相似文献   

19.
We report here an experimental observation of field emission from arrays of multiwall carbon nanotubes. Current densities in the range 10–30 mA/cm2 with excellent long-term stability were recorded. A detailed study of the destruction of nanotubes at extreme operation conditions is performed. We established that field evaporation of nanotubes accompanies field emission from a cold cathode at electric fields higher than 2 V/?. Electron microscopy of the evaporation products reveals irregularly shaped carbon nanoparticles with a hollow core. The diameter of the particles is ∼20 nm. A mechanism of the process is proposed and discussed. Received: 6 October 2000 / Accepted: 28 April 2001 / Published online: 27 June 2001  相似文献   

20.
Y-junction carbon nanotubes were grown by catalytic CVD of methane at 700 °C on NiO-CuO-MoO(7:2:1) (w/w/w)/SiO2 catalyst. For comparison, NiO-CuO(8:2) (w/w)/SiO2 and NiO-MoO(8:2) (w/w)/SiO2 catalysts were tested for carbon nanotube formation. TEM analysis indicates that no Y-junction structures were formed with the latter two catalysts. This finding elucidates why the addition of a small amount of MoO to NiO-CuO/SiO2 catalyst is crucial for enhancing the formation of Y-junction carbon nanotubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号