首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
A transverse flow transversely excited (TFTE) CW CO2 with a maximum output power about 15 kW has been developed. This is excited by pulser sustained DC discharge applied between a pair of multi-pins anodes and a common tubular cathode. Though the laser power in convective cooled CO2 laser scales proportionally with the volumetric gas flow, it did not increase in this laser when the volumetric gas flow was increased by increasing the electrode separation keeping the flow velocity constant. The discharge voltage too remained almost unchanged with increase of the electrode separation. These observations are explained considering the electrical discharge being controlled by ionization instability. Laser materials processing applications often demand programming facilities for laser power modulation. A four-stage cascaded multilevel DC–DC converter-based high-frequency switch mode power supply has been developed to modulate the output power of the laser. Laser was operated up to 15 kW output power in four different modes viz. continuous wave mode, pulse periodic mode, single shot mode and processing velocity-dependent power mode with 1.2 kHz modulation bandwidth. We describe briefly the laser system, the SMPS, and the temporal behavior of laser beam.  相似文献   

2.
A. K. Nath  V. S. Golubev 《Pramana》1998,51(3-4):463-479
Various criteria for designing high power convective cooled CO2 lasers have been discussed. Considering the saturation intensity, optical damage threshold of the optical resonator components and the small-signal gain, the scaling laws for designing high power CW CO2 lasers have been established. In transverse flow CO2 lasers having discharge of square cross-section, the discharge lengthL and its widthW for a specific laser powerP (Watt) and gas flow velocityV (cm/s) can be given byL = 1.4 x 104 p 1/2 V -1 cms andW = 0.04P 1/2 cms. The optimum transmitivity of the output coupler is found to be almost constant (about 60%), independent of the small signal gain and laser power. In fast axial flow CO2 lasers the gas flow should be divided into several discharge tubes to maintain the flow velocity within sonic limit. The discharge length in this type of laser does not depend explicitly on the laser power, instead it depends on the input power density in the discharge and the gas flow velocity. Various considerations for ensuring better laser beam quality are also discussed.  相似文献   

3.
A transverse flow, transverse discharge cw CO2 laser in which de discharge is sustained by employing high repetition rate high voltage pulses has been developed. Pulser sustained discharge through electrodes of innovative design provided uniform excitation at electrical input power densities more than 10 W/cc. Laser output power more than 2.5 kW was obtained in a laser gas mixture consisting of 0.5 mbar of CO2, 16 mbar of N2 and 38.5 mbar of He. Design details and operational characteristics of this laser are presented.  相似文献   

4.
A four-temperature model has been applied on a fast axial flow, longitudinal discharge CO2 laser. Using Runge–Kutta method, a set of differential equations of the model is numericaly solved. These equations describe the operation of the laser with certain ratio 1:3:6 of the mixture CO2:N2: He and average output power of 550 W.The temporal behaviour of the output power and photon density was obtained. The effects of kinetic temperature, coupled mirror reflectivity, gas flow speed, and cavity loss on the output power were studied.Calculated output power was compared with its measured value taken from experiment and a good agreement was observed.  相似文献   

5.
This paper presents the results of the calculation of the parameters of the active medium of a fast-axial-flow CO2 laser using numerical methods in the framework of a one-dimensional approximation of the set of continuity equations, Bernoulli equation, equation of gas state, energy equation and multi-temperature rate equations with regard to diffusion for the gas flow in the cylindrical discharge tube. The spatial distribution of the small-signal gain and gas temperature along the gas flow direction have been calculated for a given set of initial conditions, namely, gas flow velocity, gas pressure and the tube diameter. In addition, the dependence of small-signal gain, the asymmetric stretch vibrational temperature of CO2 (T3) and the gas temperature on the discharge current were studied.  相似文献   

6.
CO2 lasers with transverse discharge and convective gas cooling find ever-increasing application. On strategy in making such lasers more efficient radiators is increasing the rate of the gas flow through the discharge zone with the help of diametral disk fans-heat exchangers. The application of such fans-heat exchangers, however, entails serious difficulties related to the glow discharge-gas flow interaction. In the present study, we investigate the stability problem for volume discharge in the gas loop of a CO2 laser with diametral dis fans-heat exchangers.  相似文献   

7.
We present the results of analysis of the errors introduced by hot-band transitions 1110-0111, 0310-0111, 1200-1201 of the CO2 molecule and the absorption lines of the H2O and NO2 molecules in determination of the temperature and partial pressure of CO2, included in the gas mixture CO2: N2:H2O: NO2 at atmospheric pressure, by multiple-frequency laser probing using a CO2 laser tunable over the lines of the 0001-[1000,0200]I,II ground-state laser transitions. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 74, No. 6, pp. 810–815, November–December, 2007.  相似文献   

8.
For obtaining the maximal output power, five lasing gas mixtures (CO2, N2, He, Xe and H2) in a sealed-off CO2 laser are optimized by applying a genetic algorithm and solving CO2 laser kinetics equations. A comparison of numerical simulations shows that the optimal pressures of CO2 and N2 are 1.15 Torr and 7.32 Torr, respectively. Accordingly, the maximum laser power of 124 W is obtained by utilizing the optimal gas combination and an optimized resonator with a length of 1.2 m. Received: 14 August 2002 / Published online: 22 January 2003 The project supported by Zhejiang Provincial Natural Science Foundation of China (No. 602098). RID="*" ID="*"Corresponding author. Fax: +86-571/8832-0369, E-mail: chengch@mail.hz.zj.cn  相似文献   

9.
In a research of fast axial flow CO2 laser sustained by 150 kHz silent discharge, we found the optimized gas mixing ratio was CO2:N2:He=1:22:5 or the content of helium was only about 18%. This result upset the situation of common CO2 lasers in which the most important laser gas is helium. An explanation of our particular results and supporting experimental evidence are given.  相似文献   

10.
A kinetic model has been developed for the investigation of the novel performance of a CO laser, on which efficient extraction of laser power was obtained by exciting a subsonic gas mixture of CO/N2/He/O2 through transverse dc discharge. Kinetic equations for direct excitation by electron impact, V-V and V-R/T energy transfer, and stimulated emission are coupled with a semi-one-dimensional flow model. Careful consideration is devoted especially to the V-V transfer process of CO–N2 and N2–N2. The laser power was calculated by a constant gain method. The laser output performance, examined as a function of gas mixture ratio, temperature, flow velocity, and discharge current, was in good agreement with the experiment.  相似文献   

11.
Initiation of a self-sustained volume discharge in CO2-containing gaseous mixtures kept under a pressure of up to 10 atm with the aim of amplifying picosecond IR pulses is considered. Experimental electricdischarge and optical characteristics of a wide-aperture high-pressure CO2 amplifier are presented. The feasibility of designing terawatt laser equipment with a master oscillator and preamplifier is discussed.  相似文献   

12.
RF-excited fast axial flow CO2 lasers in kilowatt regime are presently being used for various new scientific applications in addition to laser material processing because of its versatility and superior beam quality. We have indigenously developed a compact 2 kW RF-excited fast axial flow CO2 laser with moderate beam quality. In this paper the key design features of the laser and the associated high power capacitively coupled RF excitation technique are discussed in detail. Operational characteristics of this system are described along with the experimental findings.  相似文献   

13.
Acoustical shock waves (Mach number <2) generated in situ by spark gap are propagated in weakly ionized dc discharges working at low pressure (399 Pa) and containing either Ar or N2 gas. The electrical characterization and the laser deflection technique are used to measure the characteristics of dc discharge (such as voltage, resistance and power of discharge) and the structure and velocity of shock wave, respectively. The results stress the importance of atomic and molecular nature of the gases in affecting the power deposition and the shock wave properties.  相似文献   

14.
The preparation of TiO2 nanoparticles by CO2 laser pyrolysis of TiCl4 (vapor)-based gas mixtures was investigated as a function of laser power and influence of the oxidizer. Increased crystallinity and crystallite dimensions as well as increase of the rutile fraction are observed at moderate flow increase in the flow rate of the oxidizing agent.  相似文献   

15.
A novel long-pulse TE CO2 laser with UV-preionization is presented. With an active volume of 1.17 l and gas pressure of 30 kPa, the laser can discharge stably with low pulser energy and high sustainer energy. Various long-pulse discharges such as 12, 20 or 25 μs are demonstrated. At discharge pulse width of 23.9 μs, maximum output laser energy of 6.8 J is obtained at an efficiency of 9.0%.  相似文献   

16.
Selective laser isotope separation by TEA CO2 laser often needs short tail-free pulses. Using laser mixtures having very little nitrogen almost tail free laser pulses can be generated. The laser pulse characteristics and its gas lifetime is an important issue for long-term laser operation. Boltzmann transport equation is therefore solved numerically for TEA CO2 laser gas mixtures having very little nitrogen to predict electron energy distribution function (EEDF). The distribution function is used to calculate various excitation and dissociation rate of CO2 to predict laser pulse characteristics and laser gas lifetime, respectively.Laser rate equations have been solved with the calculated excitation rates for numerically evaluated discharge current and voltage profiles to calculate laser pulse shape. The calculated laser pulse shape and duration are in good agreement with the measured laser characteristics. The gas lifetime is estimated by integrating the equation governing the dissociation of CO2. An experimental study of gas lifetime was carried out using quadrapole mass analyzer for such mixtures to estimate the O2 being produced due to dissociation of CO2 in the pulse discharge. The theoretically calculated O2 concentration in the laser gas mixture matches with experimentally observed value. In the present TEA CO2 laser system, for stable discharge the O2 concentration should be below 0.2%.  相似文献   

17.
A supersonic gas flow having a Mach number of 2 has been realized in a closed-cycle radio-frequency (RF)-discharge-excited supersonic CO2 laser system. Stable RF discharge at a high CO2 gas concentration has become possible using supersonic gas flow and RF discharge generated between dielectric electrodes. As a result, high RF input power density has been obtained. In addition, a high small-signal gain has been obtained in the supersonic section through decreases in gas pressure and gas temperature due to supersonic gas flow.This revised version was published online in August 2005 with a corrected cover date.  相似文献   

18.
Experimental and theoretical study of VI characteristics of UV pre-ionized TEA CO2 laser has been carried out for a variety of gas mixtures emitting different optical pulse shapes suitable for various applications. Coupled differential equations have been solved to model the pulse excitation circuit using the numerically calculated values of ionization coefficient (α), attachment coefficient (β) and drift velocity (Ud) as functions of E/N (i.e. electric field to neutral particle density ratio) for chosen gas mixture. Calculated and experimental V–I characteristics for gas mixtures (CO2:N2:He::1:2:3, 1:1:4, 1:1:5 and 1:0:4.7) show a good agreement. It has been shown that gas mixture has a dominant effect on the delay between pre-ionization and main discharge; thus, determining the long-term stability of discharge. The excitation pulse duration increases with increase in molecular content of gas mixture (i.e. amount of CO2 and N2 in gas mixture).  相似文献   

19.
Starting from an analytical macroscopic/phenomenological model yielding the self-bias voltage as a function of the absorbed radio-frequency (rf) power of an asymmetric capacitively coupled discharge in NF3 this paper studies the dependence of the ion flux onto the powered electrode on the gas pressure. An essential feature of the model is the assumption that the ions' drift velocity in the sheath near the powered electrode is proportional to E α, where E=−ΔU (U being the self-bias potential), and α is a coefficient depending on the gas pressure and cross section of elastic ion-neutral collisions. The model also considers the role of γ-electrons, stochastic heating as well as the contribution of the active electron current to the global discharge power balance. Numerically solving the model's basic equations one can extract the magnitude of the ion flux (at three different gas pressures) in a technological etching device (Alcatel GIR 220) by using easily measurable quantities, notably the self-bias voltage and absorbed rf power.  相似文献   

20.
The performance of a compact uv photo-preionized TE laser is studied in the pressure range 1–5 bar. As the pressure is increased, the laser pulse shape is little altered, but both the peak power and the total output pulse energy increase significantly with pressure, even for constant input electrical energy. For various gas mixtures and excitation source capacitors the measurements suggest approximate output energy scaling with the product of the source charge per unit electrode area [C.m–2] and the molecular partial pressure [CO2+N2+CO]. This is explained in terms of the pressure-dependent discharge impedance. An input-energy-related discharge instability limits the optimum laser pressure to 1.5–2.5 bar, and we show that, at constant input energy, the instability boundary depends on the molecular partial pressure alone. The pre-ionization photo-electron yield varies negligibly with pressure, but the discharge tolerance to added oxygen decreases asp –3 top –4, dependent on gas mixture. Nevertheless sealed operation for >105 shots has been obtained with a 5% CO25% CO3% N22% H285% He gas mixture at a total pressure of 5 bar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号