首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
This paper is devoted to the third part of the analysis of the very weak absorption spectrum of the 18O3 isotopologue of ozone recorded by CW-Cavity Ring Down Spectroscopy between 5930 and 6900 cm−1. In the two first parts [A. Campargue, A. Liu, S. Kassi, D. Romanini, M.-R. De Backer-Barilly, A. Barbe, E. Starikova, S.A. Tashkun, Vl.G. Tyuterev, J. Mol. Spectrosc. (2009), doi: 10.1016/j.jms.2009.02.012 and E. Starikova, M.-R. De Backer-Barilly, A. Barbe, Vl.G. Tyuterev, A. Campargue, A.W.Liu, S. Kassi, J. Mol. Spectrosc. (2009) doi: 10.1016/j.jms.2009.03.013], the effective operators approach was used to model the spectrum in the 6200–6400 and 5930–6080 cm−1 regions, respectively. The analysis of the whole investigated region is completed by the present investigation of the 6490–6900 cm−1 upper range. Three sets of interacting states have been treated separately. The first one falls in the 6490–6700 cm−1 region, where 1555 rovibrational transitions were assigned to three A-type bands: 3ν2 + 5ν3, 5ν1 + ν2 + ν3 and 2ν1 + 3ν2 + 3ν3 and one B-type band: ν1 + 3ν2 + 4ν3. The corresponding line positions were reproduced with an rms deviation of 18.4 × 10−3 cm−1 by using an effective Hamiltonian (EH) model involving eight vibrational states coupled by resonance interactions. In the highest spectral region – 6700–6900 cm−1 – 389 and 183 transitions have been assigned to the ν1 + 2ν2 + 5ν3 and 4ν1 + 3ν2 + ν3 A-type bands, respectively. These very weak bands correspond to the most excited upper vibrational states observed so far in ozone. The line positions of the ν1 + 2ν2 + 5ν3 band were reproduced with an rms deviation of 7.3 × 10−3 cm−1 by using an EH involving the {(054), (026), (125)} interacting states. The coupling of the (431) upper state with the (502) dark state was needed to account for the observed line positions of the 4ν1 + 3ν2 + ν3 band (rms = 5.7 × 10−3 cm−1).The dipole transition moment parameters were determined for the different observed bands. The obtained set of parameters and the experimentally determined energy levels were used to generate a complete line list provided as Supplementary Materials.The results of the analyses of the whole 5930–6900 cm−1 spectral region were gathered and used for a comparison of the band centres to their calculated values. The agreement achieved for both 18O3 and 16O3 (average difference on the order of 1 cm−1) indicates that the used potential energy surface provides accurate predictions up to a vibrational excitation approaching 80% of the dissociation energy. The comparison of the 18O3 and 16O3 band intensities is also discussed, opening a field of questions concerning the variation of the dipole moments and resonance intensity borrowing by isotopic substitution.  相似文献   

2.
We present the high resolution absorption measurements of gaseous HONO at room temperature using continuous-wave cavity ring-down spectroscopy in the near-infrared region between 6017 and 6067 cm−1 at a resolution of 1 pm (0.037 cm−1). For the trans-HONO isomer an extensive analysis of the ν1+2ν3 combination band 6045.8089 cm–1 was performed starting from the results of a previous study for the 11 and 31 vibrational states [Guilmot J-M, Godefroid M, Herman M. Rovibrational parameters for trans-nitrous acid. J Mol Spectrosc 1993;160:387–400]. The present combination band is perturbed because of the existence of several dark states of HONO which could not be identified unambiguously. The rotational constants achieved for the 1132 state deviate slightly from the values which are predicted from the rotational constants achieved in the previous studies for the 11 and 31 vibrational states of trans-HONO.  相似文献   

3.
This paper reports the spectral properties and energy levels of Cr3+:Sc2(MoO4)3 crystal. The crystal field strength Dq, Racah parameter B and C were calculated to be 1408 cm−1, 608 cm−1 and 3054 cm−1, respectively. The absorption cross sections σα of 4A24T1 and 4A24T2 transitions were 3.74×10−19 cm2 at 499 nm and 3.21×10−19 cm2 at 710 nm, respectively. The emission cross section σe was 375×10−20 cm2 at 880 nm. Cr3+:Sc2(MoO4)3 crystal has a broad emission band with a broad FWHM of 176 nm (2179 cm−1). Therefore, Cr3+:Sc2(MoO4)3 crystal may be regarded as a potential tunable laser gain medium.  相似文献   

4.
The high-resolution infrared spectrum of HCF3 was studied in the ν6 fundamental (near 500 cm−1) and in the 2ν6 overtones (near 1000 cm−1) regions. The present study reports on the analysis of the hot bands in the ν6 region, as well as the first observation and assignment of the 2ν62 perpendicular band. Using ν6, 2ν6±2ν6±1 and 2ν62 experimental wavenumbers, accurate coefficients C0 and DK0 of the K-dependent ground-state energy terms were obtained, using the so-called “loop method.” Ground-state energy differences Δ(K,J)=E0(K,J)−E0(K−3,J) were obtained for K=3–30. A least-squares fit of 81 such differences gave the following results (in cm−1): C0=0.1892550(15); DK0=2.779(26) × 10−7.  相似文献   

5.
The semirigid bender Hamiltonian [Bunker and Landsberg, J. Mol. Spectrosc. 67, 374–385 (1977)] is used to fit the rotation-vibration energy level separations in the carbon suboxide molecule C3O2. We allow the CC bond lengths and CCO bond angles to change with the CCC bending angle ρ. A very good fit to the energy levels is obtained and, in particular, the B values are systematically fitted better than when the rigid bender is used. The dependence of the effective CCC bending potential function on the vibrations ν2, ν3, and ν4 is determined, and we find that excitation of ν3 or ν4 raises the barrier to linearity whereas excitation of ν2 lowers it. These results can be understood by considering the ρ dependence of the G-matrix elements. We determine that the barrier to CCC linearity in the zero-point vibrational state is 28 cm−1 but until more data are available for the ν1, ν5, and ν6 vibrations we cannot precisely determine the true barrier. However, it has been previously shown that the barrier is little affected by excitation of ν1 or ν5, and that it is reduced by 10–15 cm−1 by excitation of ν6. From these results we deduce that the barrier to CCC linearity in the true bending potential function is 33 cm−1 with an uncertainty of about 5 cm−1. Thus the equilibrium structure is bent at the central carbon atom; the equilibrium CCC angle is 157°.  相似文献   

6.
CARS laboratory experiments were done in the 2905–2925 cm−1 range, in the vicinity of the ν1 band of the methane molecule, for pressures ranging from 1 to 50 bar, and temperatures up to 1100 K. These experiments were carried out in order to retrieve the pressure evolution of the CH4 spectrum, as well as to confirm its temperature dependance. After a brief recall on the theory used to compute pressure broadening coefficients and relaxation rates, we consider the ν3 and ν4 infrared bands of methane for benchmark calculations purposes. Next, we present recent experimental CARS spectra and calculated ones. Lastly, we discuss flame experiments as well as comparisons of temperature retrieval using N2 and CH4 as probe molecules.  相似文献   

7.
The ν4 band of silane has been recorded with a resolution of about 0.06 cm−1 in the region from 850 to 950 cm−1. Assignments of all allowed transitions in this range with J′ ≤ 12 have been made on the basis of frequency and relative intensity. Qualitative agreement with theory is good but quantitative agreement begins to break down above J′ = 8. The breakdown is attributed to the effects of the strong Coriolis interaction with nearby ν2.Lines of 29SiH4 and 30SiH4 have been observed in the R branch with constant isotope shifts of −1.334 cm−1 and −2.600 cm−1.  相似文献   

8.
The Fourier transform infrared spectrum of monoisotopic SC80Se has been investigated in the ν2, ν3, 2ν2, 2ν3, and ν1 regions with a resolution between 3 and 4 × 10−3 cm−1. In addition, the millimeter-wave spectrum has been studied in the region 150 to 320 GHz, and ground and ν2 = 1 excited state transitions have been measured. Ground state constants, B0 = 2043.285 4(4) MHz and D0 = 146.53(5) Hz, have been determined from a merge of millimeter-wave data and ground state combination differences spanning J values up to 77 and 143, respectively. The band centers ν2 = 352.341 075(9) cm−1 and ν3 = 505.480 06(5)cm−1 have been determined. The rovibrational parameters of numerous overtone and combination levels (ν1νl22ν3) = 0200, 0220, 0310, 0330, 0400, 0420, 0002, and 0003 have been obtained from polynomial analyses whose standard deviations ranged from 0.7 to 3.5 × 10−4 cm−1. The 1000 level, νeff 1435.840 cm−1, is anharmonically perturbed by the 0400 level, with an avoided crossing at J = 55, and W12222 = 0.963 09(1) cm−1. Transitions to both the upper (E+) and lower (E) sublevels of the dyad were observed for 1 ≤ J′ ≤ 117 and 4 ≤ J′ ≤ 171, respectively, and the deperturbed wavenumbers ν1 = 1435.542 76(2) and 4ν02 = 1432.725 00(3) cm−1 were derived. Furthermore, a local crossing of the E and 0420 levels involving l-type resonance was observed at J = 91.  相似文献   

9.
High-resolution (0.001 cm−1) coherent anti-Stokes Raman scattering (CARS) was used to observe the Q-branch structure of the IR-inactive ν1 symmetric stretching mode of 32S16O3 and its various 18O isotopomers. The ν1 spectrum of 32S16O3 reveals two intense Q-branches in the region 1065–1067 cm−1, with surprisingly complex vibrational–rotational structure not resolved in earlier studies. Efforts to simulate this with a simple Fermi-resonance model involving ν1 and 2ν4 states do not reproduce the spectral detail, nor do they yield reasonable spectroscopic parameters. A more subtle combination of Fermi resonance and indirect Coriolis interactions with nearby states, 2ν4(1=0, ±2), ν24(1=±1), 2ν2(1=0), is suspected and a determination of the location of these coupled states by high-resolution infrared measurements is under way. At medium resolution (0.125 cm−1), the infrared spectra reveal Q-branch features from which approximate band origins are estimated for the ν2, ν3, and ν4 fundamental modes of 32S18O3, 32S18O216O, and 32S18O16O2. These and literature data for 32S16O3 are used to calculate force constants for SO3 and a comparison is made with similar values for SO2 and SO. The frequencies and force constants are in excellent agreement with those obtained by Martin in a recent ab initio calculation.  相似文献   

10.
The infrared (IR) spectrum of PD3 has been recorded in the 1580–1800 cm−1 range at a resolution of 0.0027 cm−1. About 2400 rovibrational transitions with J=K22 have been measured and assigned to the ν1 (A1) and ν3 (E) stretching fundamentals. These include 506 “perturbation-allowed” transitions with selection rules Δ(kl)=±3. Splittings of the K′′=3 lines have been observed. Effects of strong perturbations are evident in the spectrum. Therefore the rovibrational Hamiltonian adopted for the analysis explicitly takes into account the Coriolis and k-type interactions between the v1=1 and v3=1 states, and includes also several essential resonances within these states. The rotational structure in the v1=1 and v3=1 vibrational states up to J=K=18 was reproduced by fitting simultaneously all experimental data. Thirty-four parameters reproduced 1950 transitions retained in the final cycle with a standard deviation of the fit equal to 4.9 × 10−4 cm−1 (about the precision of the experimental measurements).  相似文献   

11.
Experimental line intensities of 1727 transitions arising from nine hot bands in the pentad–dyad system of methane are fitted to first and second order using the effective dipole moment expansion in the polyad scheme. The observed bands are ν3− ν2, ν3− ν4, ν1− ν2, ν1− ν4, 2ν4− ν4, ν2+ ν4− ν2, ν2+ ν4− ν4, 2ν2− ν2, and 2ν2− ν4, and the intensities are obtained from long-path spectra recorded with the Fourier transform spectrometer located at Kitt Peak National Observatory. For the second order model, some of the 27 intensity parameters are not linearly independent, and so two methods (extrapolation and effective parameters) are proposed to model the intensities of the hot bands. In order to obtain stable values for three of these parameters, 1206 dyad (ν4, ν2) intensities are refitted simultaneously with the hot band lines. The simultaneous fits to first and second order lead to rms values respectively of 21.5% and 5.0% for the 1727 hot band lines and 6.5% and 3.0% for the 1206 dyad lines. The band intensities of all 10 pentad–dyad hot bands are predicted in units of cm−2atm−1at 296 K to range from 0.931 (for 2ν4− ν4) to 7.67 × 10−5(for 2ν4− ν2). The total intensities are also estimated to first order for two other hot band systems (octad–pentad and tetradecad–octad) that give rise to weak transitions between 5 and 10 μm.  相似文献   

12.
The vibration-rotation spectrum of methyl isocyanide (CH3NC) has been recorded with the aid of a high-resolution Fourier transform spectrometer in the region 1370 to 1560 cm−1 containing the perpendicular band of the fundamental vibration ν6 (species E), the weaker parallel band of the ν3 (A1) fundamental, and the perpendicular combination band ν7 + ν8 (E) enhanced by Fermi resonance with ν6. Sixteen hundred seventy well-resolved lines were assigned to 15 subbands of ν6, 6 subbands of ν3, and 3 subbands of ν7 + ν8. A strong x, y-Coriolis resonance between ν3 and ν6 and Fermi resonance between ν±6 and the E component ν7 + ν8, as well as between ν3 and the A1,2 components ν±7 + ν8, greatly affects the spectrum. Additional weaker anharmonic interaction of ν6 with the ν4 + 2ν28 combination and higher-order rotational interactions connecting the various states were also detected in the spectrum. All of these interactions have been incorporated into a 9 × 9 Hamiltonian matrix used for modeling the upper states of the observed transitions. A set of spectroscopic constants is reported for the upper states of the bands ν3, ν6, and ν7 + ν8 and for ν4 + 2ν28 which reproduces the observed lines with an overall standard deviation of 0.0012 cm−1.  相似文献   

13.
The gas-phase infrared spectrum of CH3CD3 in the region of the perpendicular C---H stretching band, ν7, near 3000 cm−1 has been studied under a spectral resolution of 0.025 cm−1, increased to 0.015 cm−1 by deconvolution. An assignment of lines in the subbands KΔK = +15 to −3 is proposed, and their upper-state constants are reported. The interpretation of the effective rotational constants of the individual subbands is complicated by a strong perturbation.  相似文献   

14.
Using a Fourier transform spectrometer, we have recorded the spectra of ozone in the region of 4600 cm−1, with a resolution of 0.008 cm−1. The strongest absorption in this region is due to the ν1+ ν2+ 3ν3band which is in Coriolis interaction with the ν2+ 4ν3band. We have been able to assign more than 1700 transitions for these two bands. To correctly reproduce the calculation of energy levels, it has been necessary to introduce the (320) state which strongly perturbs the (113) and (014) states through Coriolis- and Fermi-type resonances. Seventy transitions of the 3ν1+ 2ν2band have also been observed. The final fit on 926 energy levels withJmax= 50 andKmax= 16 gives RMS = 3.1 × 10−3cm−1and provides a satisfactory agreement of calculated and observed upper levels for most of the transitions. The following values for band centers are derived: ν01+ ν2+ 3ν3) = 4658.950 cm−1, ν0(3ν1+ 2ν2) = 4643.821 cm−1, and ν02+ 4ν3) = 4632.888 cm−1. Line intensities have been measured and fitted, leading to the determination of transition moment parameters for the two bands ν1+ ν2+ 3ν3and ν2+ 4ν3. Using these parameters we have obtained the following estimations for the integrated band intensities,SV1+ ν2+ 3ν3) = 8.84 × 10−22,SV2+ 4ν3) = 1.70 × 10−22, andSV(3ν1+ 2ν2) = 0.49 × 10−22cm−1/molecule cm−2at 296 K, which correspond to a cutoff of 10−26cm−1/molecule cm−2.  相似文献   

15.
An analysis of the ν6=1 state of fluoroform is performed using rotational and high resolution infrared spectra. Previously radiofrequency data [Chem. Phys. Lett. 214 (1993) 265–270] and millimeter data [J. Mol. Spectrosc. 131 (1988) 1–8] were combined with new millimeter and infrared measurements, and a set of 27 parameters has been derived. A multiple fit analysis was performed confirming the assumption that the ν6=1 excited state is not affected by intervibrational resonances.  相似文献   

16.
Ground state rotation and quartic distortion constants were obtained for 11B2D6 from the analysis of high resolution (0.05 cm−1) Fourier transform infrared spectra. The bands studied comprised the ν17, ν18 type A, and ν14, ν9 + ν15 type C bands of 11B2H6 and the ν16, ν17, ν18 type A, ν8 type B, and ν14 type C bands of 11B2D6. In the case of 11B2H6, the authors' ground state data were combined with those of Lafferty et al. obtained from a previous study (J. Mol. Spectrosc. 33, 345–367 (1970)) at comparable resolution of the ν16 type A and ν8 type B fundamentals. Information on the ground state rotational energy manifold of 11B2H6 was accumulated up to J = 23, Ka = 18, and of 11B2D6 up to J = 32, Ka = 22. This permitted rather precise determination of the distortion constants ΔJ0, ΔJK0, ΔK0, although δJ0 and δK0 proved to be too small (< 10−7 cm−1) and were constrained to values calculated from the force field. Sets of upper state parameters were determined for all vibrational levels studied. Although these appear to be essentially unperturbed globally, several localized perturbations were observed and identified.  相似文献   

17.
High resolution Fourier transform spectra of deuterated hydrogen sulfide have been recorded in the region 2400-3000 cm−1. Rotational structures of the ν1 + ν2, ν2 + ν3 bands of D232S, of the ν3 and ν1 + ν2 bands of HD32S, and of the ν1 + ν2 band of HD34S were analyzed. Band centers and rotational, centrifugal distortion, and resonance parameters were obtained, which reproduce the initial values of the upper energy levels within a mean accuracy of 1.39 × 10−4 cm−1 for the states (110) and (011) of D232S, 1.61 × 10−4 cm−1 and 1.82 × 10−4 cm−1 for the states (001) and (110) of HD32S, and 2.09 × 10−4 cm−1 for the state (110) of HD34S, respectively.  相似文献   

18.
Using Fourier-transform spectra (Bruker IFS 120 HR, resolution ≈0.004 cm−1) of NH3 in nine branches of the ν2, 2ν2 and ν4 bands, self-broadening and self-shift as well as self-mixing coefficients have been determined at room temperature (T=295 K) for more than 350 rovibrational lines located in the spectral range 1000–1800 cm−1. A non-linear least-squares multispectrum fitting procedure, including line mixing effects, has been used to retrieve successively the line parameters from 11 experimental spectra recorded at different pressures of pure NH3. The accuracies of self-broadening coefficients are estimated to be better than 2% for most lines. The mean accuracies of line-mixing and line-shift data are estimated to be about 15% and 25%, respectively. The results are compared with previous measurements and with values calculated using a semiclassical model based upon the Robert–Bonamy formalism that reproduces rather well the systematic experimental J and K quantum number dependencies of the self-broadening coefficients.The results concerning line mixing demonstrate a large amount of coupling between the symmetric and asymmetric components of inversion doublets mainly in the ν4 band. The line mixing parameters are both positive and negative. More than two thirds of the lines studied here have a positive shift coefficient. However, for most of them the shift coefficients are negative in the 2ν2 band. They are positive for the R branch of the ν2 band and for the PR and RP branches of the ν4 band. For the other branches they are both positive and negative. Some components of inversion doublets illustrate a correlation between line mixing and shift phenomena demonstrated by a quadratic pressure dependence of line position.  相似文献   

19.
The infrared spectrum of allene has been recorded with high resolution (0.002-0.004 cm−1) on a Fourier transform instrument in the region 730 to 1170 cm−1 containing the perpendicular bands, ν9 and ν10. A total of 21 subbands with KΔK ranging from −6 to +14 have been assigned in the ν9 band, and 26 subbands with KΔK = −10 to +15 have been assigned in the ν10 band. The bands are affected by a combination of a Jz-Coriolis and a quartic anharmonic interaction between their upper states ν9 and ν10. In addition, several other more localized perturbations are found in the spectrum. The nature of the interactions responsible for these perturbations is discussed, and five of the strongest perturbations are quantitatively accounted for by constructing a Hamiltonian matrix which includes five different perturbing states and their Coriolis and anharmonic resonances with the ν9 and ν10 upper states. A set of spectroscopic constants for the ν9 and ν10 states and for some of the perturbing states is reported.  相似文献   

20.
Ro-vibrational spectra of HNCS and DNCS have been obtained in the spectral range 300–4000 cm−1 with a practical resolution limit of 0.06 cm−1 in the region 350–1200 cm−1 and 0.15 cm−1 in the region 1200–4000 cm−1. The observed fine structure permitted definitive assignments for some of the PQK, QQK, and RQK branches in both molecules, and yielded sets of rotational constants in substantial agreement with those obtained from recent microwave and far-infrared studies. Precise estimates of the band origins have been obtained and there is evidence of second-order Coriolis coupling between the three bending modes in each molecule. The isolation of the out-of-plane bending modes has lead to a re-assignment of ν3, ν4, ν5, and ν6 for each molecule. The band origins, uncorrected for Coriolis interaction, are for HNCS and DNCS, respectively. v1:3538.6 ±0.3, 2644.5±0.5cm−1;v2:1989.0 ±0.3, 1944.3±0.5cm−1;v3:857.0 ±0.6, 851.0±0.1cm−1;v4:615.0 ±0.5, 549.1±0.2cm−1;v5:469.2 ±0.1, 365.8 ±0.2cm−1;v6:539.2 ±0.5, 481.0±0.1cm−1;  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号