首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vibration-rotation spectrum of methyl isocyanide (CH3NC) has been recorded with the aid of a high-resolution Fourier transform spectrometer in the region 1370 to 1560 cm−1 containing the perpendicular band of the fundamental vibration ν6 (species E), the weaker parallel band of the ν3 (A1) fundamental, and the perpendicular combination band ν7 + ν8 (E) enhanced by Fermi resonance with ν6. Sixteen hundred seventy well-resolved lines were assigned to 15 subbands of ν6, 6 subbands of ν3, and 3 subbands of ν7 + ν8. A strong x, y-Coriolis resonance between ν3 and ν6 and Fermi resonance between ν±6 and the E component ν7 + ν8, as well as between ν3 and the A1,2 components ν±7 + ν8, greatly affects the spectrum. Additional weaker anharmonic interaction of ν6 with the ν4 + 2ν28 combination and higher-order rotational interactions connecting the various states were also detected in the spectrum. All of these interactions have been incorporated into a 9 × 9 Hamiltonian matrix used for modeling the upper states of the observed transitions. A set of spectroscopic constants is reported for the upper states of the bands ν3, ν6, and ν7 + ν8 and for ν4 + 2ν28 which reproduces the observed lines with an overall standard deviation of 0.0012 cm−1.  相似文献   

2.
Using a Fourier transform spectrometer, we have recorded the spectra of ozone in the region of 4600 cm−1, with a resolution of 0.008 cm−1. The strongest absorption in this region is due to the ν1+ ν2+ 3ν3band which is in Coriolis interaction with the ν2+ 4ν3band. We have been able to assign more than 1700 transitions for these two bands. To correctly reproduce the calculation of energy levels, it has been necessary to introduce the (320) state which strongly perturbs the (113) and (014) states through Coriolis- and Fermi-type resonances. Seventy transitions of the 3ν1+ 2ν2band have also been observed. The final fit on 926 energy levels withJmax= 50 andKmax= 16 gives RMS = 3.1 × 10−3cm−1and provides a satisfactory agreement of calculated and observed upper levels for most of the transitions. The following values for band centers are derived: ν01+ ν2+ 3ν3) = 4658.950 cm−1, ν0(3ν1+ 2ν2) = 4643.821 cm−1, and ν02+ 4ν3) = 4632.888 cm−1. Line intensities have been measured and fitted, leading to the determination of transition moment parameters for the two bands ν1+ ν2+ 3ν3and ν2+ 4ν3. Using these parameters we have obtained the following estimations for the integrated band intensities,SV1+ ν2+ 3ν3) = 8.84 × 10−22,SV2+ 4ν3) = 1.70 × 10−22, andSV(3ν1+ 2ν2) = 0.49 × 10−22cm−1/molecule cm−2at 296 K, which correspond to a cutoff of 10−26cm−1/molecule cm−2.  相似文献   

3.
The gas-phase infrared spectrum of CH3CD3 in the region of the perpendicular C---H stretching band, ν7, near 3000 cm−1 has been studied under a spectral resolution of 0.025 cm−1, increased to 0.015 cm−1 by deconvolution. An assignment of lines in the subbands KΔK = +15 to −3 is proposed, and their upper-state constants are reported. The interpretation of the effective rotational constants of the individual subbands is complicated by a strong perturbation.  相似文献   

4.
New measurements are reported for the infrared spectrum of sulfur trioxide, 32S16O3, with resolutions ranging from 0.0015 cm−1 to 0.0025 cm−1. Rovibrational constants have been measured for the fundamentals ν2, ν3, and ν4 and the overtone band 2ν3. Comparisons are made with the earlier high-resolution measurements on SO3, and the high correlation among some of the constants related to the Coriolis coupling of the ν2 and ν4 levels is discussed in order to understand the areas of disagreement with the earlier work. Splittings of some of the levels are observed and the splitting constant for K=3 of the ground state is determined for the first time. Other observed splittings include the K=1 levels of 2ν3 (l=2), the K=2 levels of ν3 and ν4, and the K=3 levels of ν2. The analysis shows that there are level crossings between the l=0 and l=2 states of 2ν3 that allow one to determine the separation of the subband centers for these two states even though access to the l=0 state from the ground state is electric-dipole forbidden. This is a generalized phenomenon that should be found for many other molecules with the same symmetry. The l-type resonance constant, q3, that causes the splitting of the l3=±1, k=±1 levels of ν3 also couples the l3=0 and 2 states of 2ν3.  相似文献   

5.
The infrared spectrum of HC15NO an isotopically substituted species of fulminic acid, has been measured in the range 1900-3600 cm−1 at a resolution of 0.003 cm−1 with a Bruker IFS 120 HR interferometer. More than 100 subbands have been assigned. Power series coefficients for these transitions are given. A Coriolis resonance between the levels 01002 (l = 0e) and 01010 (l = 1e) allows normally "forbidden" transitions to occur, some of which were observed and assigned. We correlate transition intensities and energies of the resonance system. Variations in the manifold of nν5 states with excitation of other modes are compared.  相似文献   

6.
The overtone band 2ν08 of CH3CN around 720 cm−1 has been measured on a Bruker Fourier transform spectrometer at a resolution of 0.003 cm−1. Only the parallel band was observed, but due to the l(2, 2) resonance, ΔK = −2 lines leading to the v8 = 2, l8 = −2 levels with K = 1-3 could be seen. More information for the l8 = ±2 component of the vibrational state v8 = 2 was evaluated from the hot band 2ν±28 - ν±18. Altogether more than 1000 lines were assigned. In the fit pure rotational lines from literature were also combined. Among the results the anomalous A0 - A′ values 4.6722(13) × 10−3 cm−1 for the 2ν08 band and 7.0324(32) × 10−3 cm−1 for the 2ν±28 band are striking.  相似文献   

7.
Using 0.002 cm−1 resolution Fourier transform absorption spectra of an 17O-enriched ozone sample, an extensive analysis of the ν3 band together with a partial identification of the ν1 band of the 17O16O17O isotopomer of ozone has been performed for the first time. As for other C2v-type ozone isotopomers [J.-M. Flaud and R. Bacis, Spectrochim. Acta, Part A 54, 3–16 (1998)], the (001) rotational levels are involved in a Coriolis-type resonance with the levels of the (100) vibrational state. The experimental rotational levels of the (001) and (100) vibrational states have been satisfactorily reproduced using a Hamiltonian matrix which takes into account the observed rovibrational resonances. In this way precise vibrational energies and rotational and coupling constants were deduced and the following band centers ν03) = 1030.0946 cm−1 and ν01) = 1086.7490 cm−1 were obtained for the ν3 and ν1 bands, respectively.  相似文献   

8.
High-resolution infrared spectra of the low-lying ν3, ν4, and ν5 fundamentals of the transient molecule DCOCl are reported. These type-A/B hybrid bands have been analyzed in detail, providing extensive rotational assignments for the DCO35Cl and DCO37Cl isotopomers. The ground state constants have been refined by a simultaneous fit of the available microwave data and FTIR combination differences from the three bands. The excited state constants have been determined by fitting assignments over a wide range of J and Ka values. A small perturbation was found at high Ka values in the ν4 band and determined to be due to a ΔKa = −2 interaction with the rotational levels of the 61 vibrational state.  相似文献   

9.
The infrared (IR) spectrum of PD3 has been recorded in the 1580–1800 cm−1 range at a resolution of 0.0027 cm−1. About 2400 rovibrational transitions with J=K22 have been measured and assigned to the ν1 (A1) and ν3 (E) stretching fundamentals. These include 506 “perturbation-allowed” transitions with selection rules Δ(kl)=±3. Splittings of the K′′=3 lines have been observed. Effects of strong perturbations are evident in the spectrum. Therefore the rovibrational Hamiltonian adopted for the analysis explicitly takes into account the Coriolis and k-type interactions between the v1=1 and v3=1 states, and includes also several essential resonances within these states. The rotational structure in the v1=1 and v3=1 vibrational states up to J=K=18 was reproduced by fitting simultaneously all experimental data. Thirty-four parameters reproduced 1950 transitions retained in the final cycle with a standard deviation of the fit equal to 4.9 × 10−4 cm−1 (about the precision of the experimental measurements).  相似文献   

10.
The anisotropic and isotropic components of the ν2, ν5 rotation-vibrational Raman bands of 13CH3F were obtained separately. The two upper states are coupled by a strong second-order Coriolis resonance. The anisotropic spectrum was analyzed by means of a program system due to R. Escribano. A contour simulation and a least-squares fit of 233 assigned transitions yielded values for ν5, ΔA5, ΔA2, and Aζ5a, 5b(z). The 13C shifts of ν2 and ν5 were obtained from the isotropic spectrum.  相似文献   

11.
A high-resolution Fourier transform spectrum of the ν9 band of CD3CCH has been recorded at an apodized resolution of 0.004 cm−1 and analyzed. More than 1700 lines in the spectrum have been assigned and the parameters of the ν9 state derived. The standard deviation of the fit was 0.00034 cm−1. In order to achieve this fit it was necessary to include l-type doubling interaction and Fermi resonance between ν9 and the E component of 2ν10.  相似文献   

12.
The effective operator approach is applied to the calculation of both line positions and line intensities of the 13C16O2 molecule. About 11 000 observed line positions of 13C16O2 selected from the literature have been used to derive 84 parameters of a reduced effective Hamiltonian globally describing all known vibrational–rotational energy levels in the ground electronic state. The standard deviation of the fit is 0.0015 cm−1. The eigenfunctions of this effective Hamiltonian have then been used in fittings of parameters of an effective dipole-moment operator to more than 600 observed line intensities of the cold and hot bands covering the ν2 and 3ν2 regions. The standard deviations of the fits are 3.2 and 12.0% for these regions, respectively. The quality of the fittings and the extrapolation properties of the fitted parameters are discussed. A comparison of calculated line parameters with those provided by the HITRAN database is given. Finally, the first observations of the 2ν1 + 5ν3 and ν1 + 2ν2 + 5ν3 absorption bands by means of photoacoustic spectroscopy (PAS) is presented. The deviations of predicted line positions from observed ones is found to be less than 0.1 cm−1, and most of them lie within the experimental accuracy (0.007 cm−1) once the observed line positions are included in the global fit.  相似文献   

13.
Using a high-resolution Fourier transform spectrum of hydrogen selenide in natural abundance, about 600 intensities of lines belonging to the ν1, ν3, and 2ν2 bands of H280Se were measured. A least-squares fit of these intensities was performed, allowing determination of the vibrational transition moments of these bands and their rotational corrections. Finally, the first derivatives of the dipole moment with respect to the normal coordinates q1 and q3 were found to be ∂μχ/∂q1 = (−0.5938 ± 0.010) × 10−1 and ∂μz/∂q3 = (0.5683 ± 0.010) × 10−1 Debye, respectively.  相似文献   

14.
The Fourier transform infrared spectrum of monoisotopic SC80Se has been investigated in the ν2, ν3, 2ν2, 2ν3, and ν1 regions with a resolution between 3 and 4 × 10−3 cm−1. In addition, the millimeter-wave spectrum has been studied in the region 150 to 320 GHz, and ground and ν2 = 1 excited state transitions have been measured. Ground state constants, B0 = 2043.285 4(4) MHz and D0 = 146.53(5) Hz, have been determined from a merge of millimeter-wave data and ground state combination differences spanning J values up to 77 and 143, respectively. The band centers ν2 = 352.341 075(9) cm−1 and ν3 = 505.480 06(5)cm−1 have been determined. The rovibrational parameters of numerous overtone and combination levels (ν1νl22ν3) = 0200, 0220, 0310, 0330, 0400, 0420, 0002, and 0003 have been obtained from polynomial analyses whose standard deviations ranged from 0.7 to 3.5 × 10−4 cm−1. The 1000 level, νeff 1435.840 cm−1, is anharmonically perturbed by the 0400 level, with an avoided crossing at J = 55, and W12222 = 0.963 09(1) cm−1. Transitions to both the upper (E+) and lower (E) sublevels of the dyad were observed for 1 ≤ J′ ≤ 117 and 4 ≤ J′ ≤ 171, respectively, and the deperturbed wavenumbers ν1 = 1435.542 76(2) and 4ν02 = 1432.725 00(3) cm−1 were derived. Furthermore, a local crossing of the E and 0420 levels involving l-type resonance was observed at J = 91.  相似文献   

15.
The infrared spectra of the a-type transitions of the ν2 and ν3 bands of HO35Cl and HO37Cl have been obtained under high resolution. Line assignments of both bands have been made, and the spectroscopic constants have been obtained for both bands using a Watson Hamiltonian. Lines of the Ka = 5 subband of the ν2 band of the HO35Cl molecule were found to be slightly shifted by an interaction with the Ka = 4 level of the 2ν3 vibrational state. The b-type transitions permitted for both bands were too weak to observe. Relative intensities of selected lines of both bands have been measured, and empirical Herman-Wallis factors have been determined.  相似文献   

16.
The high-resolution infrared spectrum of HCF3 was studied in the ν6 fundamental (near 500 cm−1) and in the 2ν6 overtones (near 1000 cm−1) regions. The present study reports on the analysis of the hot bands in the ν6 region, as well as the first observation and assignment of the 2ν62 perpendicular band. Using ν6, 2ν6±2ν6±1 and 2ν62 experimental wavenumbers, accurate coefficients C0 and DK0 of the K-dependent ground-state energy terms were obtained, using the so-called “loop method.” Ground-state energy differences Δ(K,J)=E0(K,J)−E0(K−3,J) were obtained for K=3–30. A least-squares fit of 81 such differences gave the following results (in cm−1): C0=0.1892550(15); DK0=2.779(26) × 10−7.  相似文献   

17.
Fourier transform measurements with an apodized apparatus function up to 0.002 cm−1 are reported for the ν9 band (ρu) of ethane in the 12-μm region, together with an integrated band strength obtained from intensity measurements on selected Q-branch lines recorded using a diode laser spectrometer. Since the ν9 band falls in an atmospheric window, these data may be useful in studies of the ethane concentration in the atmosphere of Jupiter and other outer planets. Torsional splittings in the ν9 level caused by a higher-order Coriolis interaction with the close lying 3ν4 state (a1u) have been analyzed in a global least squares fit of 2206 Fourier transform lines and 58 diode splittings to a molecular Hamiltonian containing 20 parameters, with a standard deviation of 0.35 × 10−3 cm−1. Rotational levels of one component of the torsionally split 3ν4 state cross interacting rotational levels of the ν9 state for K = 17, and the spectrum is followed to K = 19 on the pP subband side to permit inclusion of ν9 levels beyond this crossing. No transitions to 3ν4 levels were observed. The theoretical treatment presented here makes use of standard symmetric top formalism and of the G36 double-group formalism for ethane.  相似文献   

18.
The 2ν3(A1) band of 12CD3F near 5.06 μm has been recorded with a resolution of 20–24 × 10−3 cm−1. The value of the parameter (αB − αA) for this band was found to be very small and, therefore, the K structure of the R(J) and P(J) manifolds was unresolved for J < 15 and only partially resolved for larger J values. The band was analyzed using standard techniques and values for the following constants determined: ν0 = 1977.178(3) cm−1, B″ = 0.68216(9) cm−1, DJ = 1.10(30) × 10−6 cm−1, αB = (B″ − B′) = 3.086(7) × 10−3 cm−1, and βJ = (DJDJ) = −3.24(11) × 10−7 cm−1. A value of αA = (A″ − A′) = 2.90(5) × 10−3 cm−1 has been obtained through band contour simulations of the R(J) and P(J) multiplets.  相似文献   

19.
The FTIR spectrum of pentafluoroethane (R125) was measured in the mid infrared region from 900 to 4000 cm−1. Vibrational assignments for R125 are revised by comparison of previous and current experimental data with ab initio calculations at both the MP2/6-311+(d,p) and B3LYP/TZV+(3df,3p) levels of theory. High resolution FTIR spectra were recorded at room temperature and in an enclosive flow cell at a rotational temperature of 140 K. The cold spectrum was sufficiently resolved to enable rovibrational analyses of the overlapping ν4 (1200.7341 cm−1) and ν13 (1223.3 cm−1) bands, which have a/c hybrid and b-type character, respectively. Ground state combination differences were used to confirm assignment of 2375 lines to ν4 (Jmax = 86, Ka max = 50) and 2921 lines to ν13 (Jmax = 60, Ka max = 54). Effective rotational and centrifugal distortion constants were determined for ν4, and the polarization ratio was found to be . Severe Coriolis perturbations prevent any satisfactory fit to the ν13 band.  相似文献   

20.
The rotational structure of the ν3 fundamental of 14N16O2 has been recorded by employing a vacuum grating infrared spectrograph. The analysis has led to the assignment of over 500 R- and P-branch transitions in the spectral region 1562–1650 cm−1. Molecular constants for the upper state, 001, have been presented. No Q-branch transitions were used in the evaluation of these constants. The presently obtained and the band center ν0 = 1616.846 cm−1 differ significantly from previous determinations. Spin splitting was observed but no information was extracted about upper state spin splitting parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号