首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
The simplified cranial window, which is transparent thinned skull, has been used for the optical imaging of cortical tissue of small animals to measure the concentration change in haemoglobin as an intrinsic signal of brain activation. The multi-spectral images of the cortical tissue of guinea pigs through the skull cranial window were compared with those of the exposed cortex to evaluate the influence of the scattering and absorption properties of the skull on the measurement of the concentration change in haemoglobin. Although skull thickness affects the sensitivity of the optical signal due to a decrease in mean optical path length in the cortical tissue, the influence of the skull cranial window on the wavelength dependence of optical path length can be ignored when the skull thickness is less than approximately 100 mm. Accurate concentration changes in oxygenated and deoxygenated haemoglobins can be calculated from the optical signal measured through a skull cranial window and the wavelength dependence of optical path length for the exposed cortex.  相似文献   

2.
光学相干层析成象技术的医学诊断应用   总被引:4,自引:3,他引:1  
陈炜  薛平 《光子学报》1999,28(11):970-973
利用超短脉冲飞秒激光建立了OCT实验装置,通过对动物肾脏组织样品的层析成象,OCT图象与传统组织学图谱能找到很好的对应关系;对动物脑梗塞模型组织的扫描成象,得到了脑梗塞侧和正常侧的OCT图象,实验中,大脑病变组织和正常组织能够被正确区分。  相似文献   

3.
Luo Z  Wang Z  Yuan Z  Du C  Pan Y 《Optics letters》2008,33(10):1156-1158
A dual-imaging modality is demonstrated for high-resolution quantitative imaging of local cerebral blood flow in the rat cortex by combining simultaneous spectral-domain Doppler optical coherence tomography (SDOCT) and full-field laser speckle contrast imaging (LSCI). Preliminary studies in tissue flow phantom and cocaine-induced cerebral blood flow changes indicated that by correlating coregistered cortical arterial blood flow, the relative measurement of flow changes by LSCI could be accurately calibrated by the absolute flow imaging provided by SDOCT (least square fit, r(2) approximately 0.96). Quantitative LSCI of cerebral blood flow is crucial to the quantitative analyses of the spatiotemporal hemodynamics of functional brain activations and thus improved understanding of neural process.  相似文献   

4.
A method for correcting the influence of light attenuation processes in biological tissues on their fluorescent images is proposed. The transfer function that takes into account the radiation losses in the medium at the wavelengths of excitation and emission of fluorescence is calculated analytically, depending on the transport scattering index and the hemoglobin tissue index. The latter is determined on the basis of a color image of the tissue in reflected visible light. Verification of the developed method was carried out on the basis of computer simulation of fluorescent images of biological tissue by the Monte Carlo method.  相似文献   

5.
Optical Review - To evaluate multi-spectral images of the absorption and scattering properties in the cerebral cortex of rat brain, we investigated spectral reflectance images estimated by the...  相似文献   

6.
We report on design of a multi-color laser set up that allows for high spectral, time and spatial resolution imaging based on second- and third-order optical nonlinearities in soft condensed matter. Two femtosecond optical parametric oscillators (OPOs) are pumped simultaneously to provide intrinsically synchronized pulses at more than a dozen tunable colors across visible and infrared wavelengths. We demonstrate the use of independently tunable OPOs in a variety of imaging modalities. In one useful application, we explore brain tissue in a two-photon absorption fluorescence imaging experiment with near infrared optical pulses (λ ~ 1,070 nm). We also demonstrate second and sum-frequency generation microscopies in different tissues. Results from application of time-resolved, three-color coherent anti-stokes Raman scattering in tissue are presented to demonstrate feasibility of quantitative spectroscopic imaging.  相似文献   

7.
Our research goal is to develop diffuse optical tomography (DOT) capable of quantitative measurement. Information on optical pathlength is essential for reconstructing images with quantitative properties, and we have performed image reconstruction with a simulation model using a time-resolved photon path distribution (time-resolved PPD). The results showed that a DOT image reconstruction algorithm using this PPD is effective in quantifying the absorbers in a scattering medium such as human tissue. This algorithm uses a photon distribution independent of absorption by simply assuming that the measurement object is homogeneous, which means that PPD needs to be calculated only once. Our technique is therefore applicable to short-time imaging of measurement objects for which absorption changes flatness such as that in human tissue.  相似文献   

8.
Light action spectra over wavelengths of 300–1000 nm are calculated for components of the human cutaneous covering: melanin, basal (bloodless) tissue, and blood oxy- and deoxyhemoglobin. The transformation of the spectra with depth in biological tissue results from two factors. The first is the wavelength dependence of the absorption coefficient corresponding to a particular skin chromophore and the second is the spectral selectivity of the radiation flux in biological tissue. This factor is related to the optical properties of all chromophores. A significant change is found to take place in the spectral distribution of absorbed radiant power with increasing depth. The action spectrum of light for the molecular oxygen contained in all components of biological tissue is also studied in the 625–645 nm range. The spectra are found to change with both the volume fraction of blood vessels and the degree of oxygenation of the blood. These results are useful for analyzing processes associated with optical absorption that are possible mechanisms for the interaction of light with biological tissues: photodissociation of oxyhemoglobin and the light-oxygen effect.  相似文献   

9.
苹果糖度的光谱图像无损检测技术研究   总被引:2,自引:0,他引:2  
刘木华  陈全胜  林怀蔚 《光学学报》2007,27(11):2042-2046
应用光谱图像技术进行了苹果内部品质无损检测技术的研究。通过采集不同波长(分别为632 nm,650 nm,670 nm,780 nm,850 nm和900 nm)的光谱图像,对所采集的光谱图像灰度分布进行洛伦兹分布(LD)、高斯分布(GD)、指数分布(ED)函数的拟合,通过比较发现洛伦兹分布为最优灰度分布拟合函数。将苹果的糖度与洛伦兹分布函数拟合所得参量分别进行多元线性回归,建立最佳单波长、最佳双波长组合、最佳三波长组合和最佳四波长组合的校正方程,相关系数R分别为0.622、0.776、0.831、0.813。实验表明,利用光谱图像技术无损检测苹果糖度是可行性的,为计算机图像对水果进行内部品质的无损检测提供技术依据。  相似文献   

10.
We propose a method for segmenting brain tissue as either gray matter or white matter in the presence of varying tissue contrast, which can derive from either differential changes in tissue water content or increasing myelin content of white matter. Our method models the spatial distribution of intensities as a Markov Random Field (MRF) and estimates the parameters for the MRF model using a maximum likelihood approach. Although previously described methods have used similar models to segment brain tissue, accurate model of the conditional probabilities of tissue intensities and adaptive estimates of tissue properties to local intensities generates tissue definitions that are accurate and robust to variations in tissue contrast with age and across illnesses. Robustness to variations in tissue contrast is important to understand normal brain development and to identify the brain bases of neurological and psychiatric illnesses. We used simulated brains of varying tissue contrast to compare both visually and quantitatively the performance of our method with the performance of prior methods. We assessed validity of the cortical definitions by associating cortical thickness with various demographic features, clinical measures, and medication use in our three large cohorts of participants who were either healthy or who had Bipolar Disorder (BD), Autism Spectrum Disorder (ASD), or familial risk for Major Depressive Disorder (MDD).We assessed validity of the tissue definitions using synthetic brains and data for three large cohort of individuals with various neuropsychiatric disorders. Visual inspection and quantitative analyses showed that our method accurately and robustly defined the cortical mantle in brain images with varying contrast. Furthermore, associating the thickness with various demographic and clinical measures generated findings that were novel and supported by histological analyses or were supported by previous MRI studies, thereby validating the cortical definitions generated by the proposed method: (1) Although cortical thickness decreased with age in adolescents, in adults cortical thickness did not correlate significantly with age. Our synthetic data showed that the previously reported thinning of cortex in adults is likely due to decease in tissue contrast, thereby suggesting that the method generated cortical definitions in adults that were invariant to tissue contrast. In adolescents, cortical thinning with age was preserved likely due to widespread dendritic and synaptic pruning, even though the effects of decreasing tissue contrast were minimized. (3) The method generated novel finding of both localized increases and decreases in thickness of males compared to females after controlling for the differing brain sizes, which are supported by the histological analyses of brain tissue in males and females. (4) The proposed method, unlike prior methods, defined thicker cortex in BD individuals using lithium. The novel finding is supported by the studies that showed lithium treatment increased dendritic arborization and neurogenesis, thereby leading to thickening of cortex. (5) In both BD and ASD participants, associations of more severe symptoms with thinner cortex showed that correcting for the effects of tissue contrast preserved the biological consequences of illnesses. Therefore, consistency of the findings across the three large cohorts of participants, in images acquired on either 1.5T or 3T MRI scanners, and with findings from prior histological analyses provides strong evidence that the proposed method generated valid and accurate definitions of the cortex while controlling for the effects of tissue contrast.  相似文献   

11.
LE Grosberg  BR Chen  EM Hillman 《Optics letters》2012,37(14):2967-2969
Conventional point-by-point imaging schemes for laser scanning microscopy limit acquisition speeds, particularly when imaging three-dimensional volumes. We report a novel approach that achieves parallelization of multiple fields of view through the use of spectral encoding. By focusing two or more beams of different wavelengths at different positions within a suitable tissue, fluorescence or second/third harmonic generation emissions from these regions can be uniquely separated. We demonstrate that this approach can allow simultaneous in vivo imaging of fluorescence in two planes within the living rodent cortex, and of second harmonic generation in fresh tissue.  相似文献   

12.
Near infrared topographic imaging is a novel non-invasive technique to obtain the activated region in the brain cortex. The light propagation in the head is strongly scattered and this causes results in poor spatial resolution and contrast in the topographic images. Adequate modelling of light propagation in the head in order to deduce the volume of tissue interrogated by a source-detector pair for topographic imaging is very important to improve the quality of image of brain activity. In this study, the light propagation in a three-dimensional realistic head model is calculated by the finite difference method. The geometry of the model is generated from axial slices of an MRI scan. The topographic image is obtained from the change in intensity detected by source-detector pairs caused by the brain activity. The images obtained by two types of source-detector arrangement are compared to evaluate the efficiency of source-detector arrangement. The results show that the double-density arrangement improves the quality of the topographic image of the brain activity.  相似文献   

13.
The crosstalk between concentration changes in oxygenated haemoglobin and deoxygenated haemoglobin calculated by the modified Lambert-Beer law in near-infrared topography is theoretically investigated. The changes in intensity detected with probe pairs on the scalp caused by the concentration change in either oxygenated or deoxygenated haemoglobin induced by the focal brain activation is predicted by Monte Carlo simulation. The topographic images of the changes in oxygenated and deoxygenated haemoglobin are obtained from the changes in the intensity of light at two wavelengths detected by probe pairs to evaluate the crosstalk. The crosstalk slightly depends on the positional relationship between the probe arrangement and the focal brain activation and is minimised when the focal brain activation is located below a measurement point that is the midpoint between a probe pair. The 690-/830-nm wavelength pair is practically effective for reducing the crosstalk, especially the crosstalk from oxygenated haemoglobin to deoxygenated haemoglobin, in the NIR topography.  相似文献   

14.
This paper presents a three-dimensional visualization method of 3D objects in a scattering medium. The proposed method employs integral imaging and spectral analysis to improve the visual quality of 3D images. The images observed from 3D objects in the scattering medium such as turbid water suffer from image degradation due to scattering. The main reason is that the observed image signal is very weak compared with the scattering signal. Common image enhancement techniques including histogram equalization and contrast enhancement works improperly to overcome the problem. Thus, integral imaging that enables to integrate the weak signals from multiple images was discussed to improve image quality. In this paper, we apply spectral analysis to an integral imaging system such as the computational integral imaging reconstruction. Also, we introduce a signal model with a visibility parameter to analyze the scattering signal. The proposed method based on spectral analysis efficiently estimates the original signal and it is applied to elemental images. The visibility-enhanced elemental images are then used to reconstruct 3D images using a computational integral imaging reconstruction algorithm. To evaluate the proposed method, we perform the optical experiments for 3D objects in turbid water. The experimental results indicate that the proposed method outperforms the existing methods.  相似文献   

15.
Coherent anti-Stokes Raman scattering (CARS) microscopy is a promising tool for chemically selective imaging based on molecular vibrations. While CARS is currently used as a biological imaging tool, many variations are still being developed, perhaps the most important being multiplex CARS microscopy. Multiplex CARS has the advantage of comparing images based on different molecular vibrations without changing the excitation wavelengths. Here we demonstrate both high-spectral- and spatial-resolution multiplex CARS imaging of polymer films, using a simple scheme for chirped CARS with a spectral bandwidth of 300 cm(-1).  相似文献   

16.
组织固有荧光光谱定义为未受生物组织吸收、散射作用影响的荧光光谱,能够直接反映组织微观结构和生物化学性质信息。为了减少吸收和散射特性对组织荧光光谱的干扰,从实测的组织荧光光谱中复原更能反映组织荧光特性的组织固有荧光光谱,搭建了基于光纤探头的组织光谱测量系统,实现生物组织相同位置处的荧光光谱和漫反射光谱测量。提出运用扩散理论从实测的漫反射光谱中提取组织生理参数,包括组织中血液体积分数、血氧饱和度、黑色素含量以及波长500 nm处约化散射系数和瑞利散射在总散射中的比例,进而计算可见波段范围内的组织光学参数;然后,根据组织光学参数和实测的漫反射光谱,从实测的荧光光谱中复原得到组织固有荧光光谱。进行临床试验验证,采集受试者皮肤组织荧光光谱与组织漫反射光谱,并复原皮肤固有荧光光谱。通过复原得到的固有荧光光谱反映人体皮肤糖基化终产物积聚量,并最终用于糖尿病无创筛查。结果显示,分别使用实测的荧光光谱和复原得到的固有荧光光谱用于糖尿病筛查时,在特异性水平同为75%时,敏感性分别为69%和90%。  相似文献   

17.
Employing nonlinear spectral imaging technique based on two-photon-excited fluorescence and second- harmonic generation (SHG) of biological tissue, we combine the image-guided spectral analysis method and multi-channel subsequent detection imaging to map and visualize the intrinsic species in a native rabbit aortic wall. A series of recorded nonlinear spectral images excited by a broad range of laser wavelengths (730- 910 nm) are used to identify five components in the native rabbit aortic wall, including nicotinamide adenine dinucleotide (NADH), elastic fiber, flavin, porphyrin derivatives, and collagen. Integrating multichannel subsequent detection imaging technique, the high-resolution, high contrast images of collagen and elastic fiber in the aortic wall are obtained. Our results demonstrate that this method can yield complementary biochemical and morphological information about aortic tissues, which have the potential to determine the tissue pathology associated with mechanical properties of aortic wall and to evaluate the phaxmacodynamical studies of vessels.  相似文献   

18.
The spectra of the absorption coefficients of external radiation by basic chromophores of human skin, such as melanin, basic tissue, and blood (including oxy- and deoxyhemoglobin), are studied in the wavelength range of 300–1000 nm. For estimates, analytical methods of the theory of light transfer are used, which take into account the multilayer structure of a biological tissue, multiple light scattering in a medium, and multiple rereflections of radiation between layers. The calculated spectra are compared with the wavelength dependences of the absorption indices of these components available from the literature. It is shown that the spectral behaviors of the coefficients and indices of absorption strongly differ, which is related to the selectivity of the optical properties of a biological tissue. The possibilities of predicting the absorption coefficients of the skin components from the absorption coefficient of the entire skin measured under conditions of variation of its biophysical parameters (the volume concentrations of melanin and blood vessels) over a wide range are evaluated.  相似文献   

19.
基于高光谱散射图像技术的UVE-LLE苹果粉质化分类   总被引:1,自引:0,他引:1  
汪泊锦  黄敏  朱启兵  王爽 《光子学报》2011,(8):1132-1136
利用高光谱散射图像技术研究了苹果的粉质化无损检测.提出了一种无信息变量消除法和局部线性嵌入相结合的苹果粉质化分类的新方法.经无信息变量消除法筛选后的波段降为全谱的23.50%.将波段选择后的原始图像数据用局部线性嵌入降维作为偏最小二乘判别分析的输入变量并建模.无信息变量消除法与局部线性嵌入相结合算法和局部线性嵌入降维方...  相似文献   

20.
A diffuse near-infrared tomography system was used to measure dynamic changes in the absolute optical properties of the human breast that were induced through pressure applied to the tissue surface. Results from five subjects show that absorption and scattering coefficients changed measurably when pressure was increased and that these relative changes correlated with the subjects' body-mass index, indicating that the effect depends on tissue composition. Fitting the absolute absorption and scattering coefficients at six wavelengths to the molar absorption spectra of the three predominant chromophores revealed that both the average total hemoglobin and oxygen saturation increased by 10%, while water concentration decreased by more than 12%. These changes indicate that the pressure-induced variation is likely due to water displacement and vascular volume increase in the region being imaged, for mild application of pressure to the breast. These results suggest that the pressure applied during optical measurements of tissue may alter the tissue physiology, and care should be taken to factor this effect into the design of optical medical instrumentation. In addition, the technique provides a unique approach to measuring tissue elastic changes in vivo in the female breast and may offer a new method for dynamic contrast imaging based on elasto-optical measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号