首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Chemically crosslinked polyvinyl alcohol (PVA)/carboxylated nanocry-stalline cellulose (PVA/CNCC) nanocomposite hydrogel films were fabricated by film-casting of PVA/CNCC mixture solutions and subsequent thermal-curing of the PVA with the CNCC. Gel fractions of the hydrogel films were measured to confirm the occurrence of crosslinking. Morphologies of the hydrogel films were characterized by polarized light microscopy and scanning electron microscopy (SEM). Thermal properties, swelling behavior and mechanical properties of the hydrogel films were investigated to evaluate the influence of CNCC content (10~30% of PVA mass). Equilibrium water content of the hydrogel films was in the range of 40~49%. At swelling equilibrium, the hydrogel films could be stretched to 3~3.4 times their original length, and their tensile strength was in the range of 7.9~11.6 MPa. The results show that the PVA/CNCC nanocomposite hydrogel films were both extensible and highly tough.  相似文献   

2.
We investigated the influence of lithium potassium zirconate (LiKZrO3) nanoparticles on the electrical properties and structural characteristics of poly(vinyl alcohol) (PVA) films. PVA/LiKZrO3 nanocomposite films were prepared by casting of aqueous solutions with varying LiKZrO3 content (0.5, 1.0, and 2.0 wt.%). The dielectric constant (ε′), dielectric loss (ε″), AC conductivity (σac), dielectric loss tangent (tan δ), and electric modulus (M′ and M″) of the nanocomposite films were measured over a range of frequencies at ambient temperature. The results show increases in σac and M′ with frequency, whereas ε′, ε″, and tan δ decreased with increasing frequency. The films were also characterized using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and X-ray diffraction (XRD) techniques. DSC and XRD revealed the nature of LiKZrO3 nanoparticle interaction with the PVA matrix. TGA analysis revealed an increase in thermal stability of the nanocomposites with increasing nanoparticle concentration. Scanning electron microscopy confirmed uniform dispersion of LiKZrO3 nanoparticles in the PVA matrix.  相似文献   

3.
Graphene oxide (GO) and reduced graphene oxide (CRGO), as a graphene derivatives, possess unique properties and a high aspect ratio, indicating great potential in nanocomposite fields. The present work reports the fabrication of the nanocomposite films by a simple and environmentally friendly process using aqueous solution and optimized time sonication for better exfoliation of the graphene sheets within Poly(Vinyl alcohol) (PVA) as matrix. The films were characterized using high-resolution TEM (HRTEM), X-ray diffraction (XRD), Microtensile testing, Differential scanning calorimetry (DSC) and Thermogravimetric analysis (TGA). The TEM images revealed a successfully exfoliation of the GO/CRGO nanosheets. XRD combined with TGA and DSC measurements showed an improvement in the thermal stability and tunable thermal properties. In addition, the Young's modulus and tensile yield strength of the composite films containing 1 wt% GO were obtained to be 4.92 GPa and 66 MPa respectively. These excellent reinforcement effects were achieved by the strong interaction between the components.  相似文献   

4.
Poly(vinyl alcohol) (PVA)/montmorillonite (MMT) nanocomposites were prepared by combining solid-state shear milling (S3M) technology with melt intercalation. Compared with the composite obtained by simple melt intercalation, more MMT layers were exfoliated and apparently oriented along the injection molding direction in the nanocomposite prepared by combining S3M technology and melt intercalation, which greatly increased the orientation degree of MMT, resulting in the greater interactions between PVA and MMT layers. Simultaneously, this also promoted the orientation of PVA molecules and produced effective nucleation of the crystallization of PVA. Consequently, the thermal stability and mechanical properties of PVA were obviously improved. For instance, when the MMT content was 3 wt%, the tensile strength and modulus of the nanocomposite with MMT prepared by S3M were 98.9 MPa and 3.1 GPa, respectively, increasing by 52% and 63.2% compared with PVA.  相似文献   

5.
Synthesis and characterization of CdS/PVA nanocomposite films   总被引:1,自引:0,他引:1  
A series CdS/PVA nanocomposite films with different amount of Cd salt have been prepared by means of the in situ synthesis method via the reaction of Cd2+-dispersed poly vinyl-alcohol (PVA) with H2S. The as-prepared films were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorption, photoluminescence (PL) spectra, Fourier transform infrared spectroscope (FTIR) and thermogravimetric analysis (TGA). The XRD results indicated the formation of CdS nanoparticles with hexagonal phase in the PVA matrix. The primary FTIR spectra of CdS/PVA nanocomposite in different processing stages have been discussed. The vibrational absorption peak of CdS bond at 405 cm−1 was observed, which further testified the generation of CdS nanoparticles. The TGA results showed incorporation of CdS nanoparticles significantly altered the thermal properties of PVA matrix. The photoluminescence and UV-vis spectroscopy revealed that the CdS/PVA films showed quantum confinement effect.  相似文献   

6.
《Composite Interfaces》2013,20(6):487-506
Layered aligned dispersion of graphene in graphene/polyvinyl alcohol (PVA) nanocomposites is prepared in the form of films through simple solution processing route. The results indicate that there exist an interfacial interaction between PVA and graphene because of hydrogen bonding. This is responsible for the change in structure of PVA (such as decrease in the level of crystallization) and exhibiting ductile PVA nanocomposite film with improved tensile modulus, tensile strength, and thermal stability. Moreover, to improve the mechanical properties of PVA nanocomposites, graphene is successfully modified using a non-covalent modifier, sodium alginate (SA) and there exist an ‘anion-π’ type of interaction in between SA and graphene. The modification results in finer dispersion of the graphene in PVA/SA-m-graphene nanocomposites. In addition, there exist a hydrogen bonding in between PVA and SA. This has resulted in the remarkable improvement in mechanical properties of PVA/SA-m-graphene nanocomposites as compared to pure PVA and PVA/graphene nanocomposites. The increase in mechanical properties of PVA/SA-m-graphene nanocomposites is achieved through better load transfer from graphene to polymer matrix, despite decrease in crystallinity of PVA. Improvement in tensile modulus and tensile strength is highest at 0.5 wt.% of SA-modified graphene in PVA/SA-m-graphene nanocomposites because of finer dispersion of graphene and is 62 and 40% higher than that of pure PVA. Addition of SA-modified graphene also improves the thermal stability of PVA/SA-m-graphene nanocomposites remarkably as compared to unmodified graphene PVA nanocomposites.  相似文献   

7.
Abstract

New organic–inorganic nanocomposites based on PVA, SiO2 and SSA were prepared in a single step using a solution casting method, with the aim to improve the thermomechanical properties and ionic conductivity of PVA membranes. The structure, morphology, and properties of these membranes were characterized by Raman spectroscopy, small- and wide-angle X-ray scattering (SAXS/WAXS), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), water uptake (Wu) measurements and ionic conductivity measurements. The SAXS/WAXS analysis showed that the silica deposited in the form of small nanoparticles (~ 10?nm) in the PVA composites and it also revealed an appreciable crystallinity of pristine PVA membrane and PVA/SiO2 membranes (decreasing with increasing silica loading), and an amorphous structure of PVA/SSA and PVA/SSA/SiO2 membranes with high SSA loadings. The thermal and mechanical stability of the nanocomposite membranes increased with the increasing silica loading, and silica also decreased the water uptake of membranes. As expected, the ionic conductivity increased with increasing content of the SSA crosslinker, which is a donor of the hydrophilic sulfonic groups. Some of the PVA/SSA/SiO2 membranes had a good balance between stability in aqueous environment (water uptake), thermomechanical stability and ionic conductivity and could be potential candidates for proton exchange membranes (PEM) in fuel cells.  相似文献   

8.
Poly(vinyl alcohol) (PVA) polymer was prepared using the casting technique. The obtained PVA thin films have been irradiated with electron beam doses ranging from 20 to 300 kGy. The resultant effect of electron beam irradiation on the structural properties of PVA has been investigated using X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR), while the thermal properties have been investigated using thermo-gravimetric analysis and differential thermal analysis (DTA). The onset temperature of decomposition T 0 and activation energy of thermal decomposition E a were calculated, results indicate that the PVA thin film decomposes in one main weight loss stage. Also, the electron beam irradiation in dose range 95–210 kGy led to a more compact structure of the PVA polymer, which resulted in an improvement in its thermal stability with an increase in the activation energy of thermal decomposition. The variation of transition temperatures with electron beam dose has been determined using DTA. The PVA thermograms were characterized by the appearance of an endothermic peak due to melting. In addition, the transmission of the PVA samples and any color changes were studied. The color intensity Δ E was greatly increased with increasing electron beam dose, and was accompanied by a significant increase in the blue color component.  相似文献   

9.
《Current Applied Physics》2018,18(9):1041-1058
Polymer nanocomposite (PNC) films based on the blend matrix of poly(vinyl alcohol) (PVA) and poly(vinyl pyrrolidone) (PVP) (50/50 wt%) incorporated with zinc oxide (ZnO) nanoparticles (i.e., (PVA–PVP)–x wt% ZnO; x = 0, 1, 3 and 5) were prepared by solution-cast method. The behaviour of polymer-polymer and polymer-nanoparticle interactions in the PNC films was ascertained by employing X-ray diffraction, energy dispersive X-ray, and Fourier transform infra-red spectroscopies. Scanning electron microscopy and atomic force microscopy were performed for the morphological characterization, whereas the thermal and optical properties of the PNC films were investigated by using differential scanning calorimetry and ultraviolet–visible spectroscopy, respectively. The dielectric and electrical behaviour of these PNC materials were determined by employing the dielectric relaxation spectroscopy over the frequency range from 20 Hz to 1 MHz. The influence of ZnO concentration on the degree of PVA crystalline phase and the crystallite size, surface morphology and roughness of the films, the glass phase transition and melting phase transition temperatures, direct and indirect optical energy band gap, refractive index, complex permittivity, electrical conductivity, activation energy and the structural dynamics of these PNC materials were explored. The investigated properties of the PNC films were credited to an innovation and engineering of novel high performance flexible nanodielectrics in the area of advanced functional materials for their promising applications especially in the next generation optoelectronic, gas sensor and microelectronic devices.  相似文献   

10.
Rod-shaped nanocrystalline cellulose (NCC) was prepared from microcrystalline cellulose (MCC) using the purely physical method of high-intensity ultrasonication. Scanning electron microscopy, transmission electron microscopy, and X-ray diffraction was used for the characterization of the morphology and crystal structure of the material. The thermal properties were investigated using thermogravimetric analysis. The reinforcement capabilities of the obtained NCC were investigated by adding it to poly(vinyl alcohol) (PVA) via the solution casting method. The results revealed that the prepared NCC had a rod-shaped structure, with diameters between 10 and 20 nm and lengths between 50 and 250 nm. X-ray diffraction results indicated that the NCC had the cellulose I crystal structure similar to that of MCC. The crystallinity of the NCC decreased with increasing ultrasonication time. The ultrasonic effect was non-selective, which means it can remove amorphous cellulose and crystalline cellulose. Because of the nanoscale size and large number of free-end chains, the NCC degraded at a slightly lower temperature, which resulted in increased char residue (9.6-16.1%), compared with that of the MCC (6.2%). The storage modulus of the nanocomposite films were significantly improved compared with that of pure PVA films. The modulus of PVA with 8 wt.% NCC was 2.40× larger than that of pure PVA.  相似文献   

11.
Polyvinyl alcohol (PVA)-Cu(II) and PVA-Cr(III) complexes were prepared with different concentrations of CuC12 and Cr(NO3)3 salts. The structures of the obtained complexes were investigated using UV spectroscopy and x-ray analysis. The thermal properties (volumetric heat capacity, thermal diffusivity, and thermal conductivity) of aqueous solutions of PVA-metal complexes have been measured using the hot-wire (and strip) technique as a function of temperature (20°-80°C). The results show that the values of the thermal properties depend on the type and the concentration of metal ions bound to the polymeric chains of PVA and the temperatures. However, a considerable increase in the values of the thermal properties was observed for PVA-Cu(II) complex. The type of metal salt under investigation affects the structure of PVA. The complex of PVA-Cr(III) is more thermally stable than the complex of PVA with Cum. However, both polymer-metal complexes showed good properties which may make them acceptable for some practical uses.  相似文献   

12.
Antistatic poly(vinyl chloride)/quaternary ammonium salt based ion-conductive acrylate copolymer (PVC/QASI) composites were successfully prepared in a Haake torque rheometer. The surface resistivity of the PVC/QASI composites could be reduced to 107 Ω sq?1 order of magnitude when the QASI content reached 20 phr (parts per hundreds of resin). The surface resistivity of the composites was slightly sensitive to the relative humidity (RH), showing a good antistatic ability under an RH of 12%. Mechanical properties tests, differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were also used to investigate the tensile strength, elongation at break, thermal properties, and morphology of the PVC/QASI composites, respectively.  相似文献   

13.
Abstract

In this research chitosan/gelatin/starch films with a 47.5/47.5/5.0 (vol.%) composition were prepared by a solution casting method. To improve the mechanical and rheological properties of the chitosan-based films, two types of chemical crosslinkers, sodium triphosphate (STP) and calcium triphosphate (CTP), were used and the effects of these crosslinkers on the mechanical properties, swelling, water vapor transmission rate (WVTR) and the rheological-mechanical spectroscopy (RMS) of the films were investigated. For each crosslinker, two concentrations (0.05 and 0.1?wt% solutions) were used. The tensile test results showed that the samples with 0.05?wt% of STP or 0.1?wt% of CTP, had the best performance in enhancing the tensile strength and modulus of the films. The swelling tests indicated that 0.05?wt% of STP had the lowest swelling, and the performance with 0.1?wt% of CTP was also good. The results of the WVTR tests revealed that 0.05?wt% of STP and 0.1?wt% of CTP had the least and the most WVTR, respectively. Also, antibacterial tests were evaluated for the films based on an inhibition zone technique, and the results showed that the films containing the STP crosslinker has the best antibacterial activity. The RMS results indicated that the rheological properties of the films were enhanced by incorporating the crosslinkers, especially 0.1% concentration of CTP, into the film formulations.  相似文献   

14.
ABSTRACT

The demands of the usage of hazardous ingredients for sulfur curing system in latex industries decrease with an increase in health-conscious and environmental awareness. This work demonstrates the incorporation of cassava starch (CS) as biodegradable fillers with natural rubber latex (NRL) through a sulfur-free crosslinking technique using radiation pre-vulcanization natural rubber latex (RVNRL) in comparison to sulfur pre-vulcanized natural rubber latex (PvNRL). The 20% CS dispersion was prepared, and 5–25?phr of dispersed CS content were compounded with NRL and formed into films by the coagulant dipping method. Microstructures and crystallinity of the films were analyzed by scanning electron microscopy (SEM) and X-ray diffraction, and their mechanical properties of NRL/CS films were characterized by tensile and tear tests. The result revealed that the crystallinity of RVNRL films was lower than PvNRL films. The total bond of S?C from PvNRL contributes to high tensile strength compared to C?C intermolecular rubber bond from radiation vulcanization system. The trend of decrement of tensile properties from sulfur crosslinking was larger than radiation crosslinking, and both systems gave similar tensile behavior at 25?phr of CS content. This attributed to the better dispersion of CS in RVNRL as confirmed by SEM micrographs. It was found that the optimum tear strength of RVNRL/CS and PvNRL/CS films was obtained at 10 and 5?phr of filler content, respectively. The result presented in this study may facilitate a contribution to the current literature on the development of latex film by radiation pre-vulcanization for rubber industry in the future.  相似文献   

15.
This article reports on the ultrasound-assisted acid hydrolysis for the synthesis and evaluation of starch nanoparticles (SNP) as nanofillers to improve the physical, mechanical, thermal, and barrier properties of polyurethane (PU) films. During the ultrasonic irradiation, dropwise addition of 0.25 mol L-1 H2SO4 was carried out to the starch dispersion for the preparation of SNPs. The synthesized SNPs were blended uniformly within the PU matrix using ultrasonic irradiation (20 kHz, 220 W pulse mode). The temperature was kept constant during the synthesis (4 °C). The nanocomposite coating films were made with a regulated thickness using the casting method. The effect of SNP content (wt%) in nanocomposite coating films on various properties such as morphology, water vapour permeability (WVP), glass transition temperature (Tg), microbial barrier, and mechanical properties was studied. The addition of SNP to the PU matrix increased the roughness of the surface, and Tg by 7 °C, lowering WVP by 60% compared to the PU film without the addition of SNP. As the SNP concentration was increased, the opacity of the film increased. The reinforcement of the SNP in the PU matrix enhanced the microbial barrier of the film by 99.9%, with the optimal content of SNP being 5%. Improvement in the toughness and barrier properties was observed with an increase in the SNP content of the film.  相似文献   

16.
Polyvinyl alcohol?polyethylene glycol?silver (PVA–PEG–Ag) nanocomposites were prepared by adding Ag nanoparticles with 5?wt.% to the (PVA–PEG) blend. The films of 0.05?mm thickness were prepared by the casting method. Samples from these films were irradiated with infrared (IR) laser fluences ranging from 1.7 to 15?J/cm2. The effect of IR laser radiation on the structural properties of PVA–PEG–Ag has been investigated using X-ray diffraction and Fourier transform infrared spectroscopy. The results indicate that the crosslinking dominates due to laser exposure at the fluence range 1.7–15?J/cm2, reducing the ordering character of the nanocomposite samples. Also, the variation of transition temperatures with the laser fluence has been determined using differential thermal analysis. The nanocomposite thermograms were characterized by the appearance of an endothermic peak due to melting, and were found to be dependent on the laser fluence. In addition, the color changes due to laser irradiation were computed using the transmission data. It is found that the color difference is largely dependent on the proportions of the red color component.  相似文献   

17.
Physically crosslinked nanocomposite hydrogels based on polyvinyl alcohol (PVA) containing Na-montmorillonite were prepared by the cyclic freezing–thawing method. The primarily exfoliated morphology of prepared nanocomposite hydrogels was confirmed by X-ray diffractometry (XRD) and transmission electron microscopy (TEM) as complementary techniques. It is shown that some interactions developed between the hydroxyl groups of PVA chains and Na-montmorillonite silicate layers in the nanocomposite hydrogels. Differential scanning calorimetry (DSC) results indicated some shifting in the glass transition temperature of the PVA hydrogel in the presence of the nanoclay. Swelling measurements showed that the swelling ratios of the nanocomposite hydrogels were increased either by decreasing the Na-montmorillonite content or by increasing the swelling medium temperature. Dynamic mechanical–thermal properties results showed higher storage modulus for nanocomposite hydrogels in temperature ranges both below and above 0°C. It was also found that the hardness of the nanocomposite hydrogels increased by increasing the nanoclay loading level.  相似文献   

18.
A series of micro hollow glass beads (HGB) filled castor oil-based polyurethane/epoxy resin graft interpenetrating polymer network (IPN) composites were prepared. The tensile and impact strengths, impact fractured surfaces, damping properties and thermal stability of the IPN composites were studied systematically in terms of composition. Results revealed that the addition of HGB into polyurethane/epoxy IPN can significantly improve not only the tensile strength but also the impact strength. The tensile strength was increased by 61% and at the same time the impact strength was increased by 25% when the HGB content was 1.5%. The damping properties were better than the composition of 0.5% or 2% HGB content when the HGB content was 1% or 1.5%. The thermal decomposition temperature was also slightly improved by the incorporation of HGB. It is suggested that the HGB reinforced polyurethane/epoxy resin IPN composites could be used as structural damping materials.  相似文献   

19.
CoPt-TiO2 nanocomposite films were synthesized by rapid thermal annealing of CoPt/TiO2 multilayers. The effects of annealing temperature, annealing time, Ag addition and TiO2 volume fraction on the microstructures and magnetic properties of the CoPt-TiO2 nanocomposite films were studied. Results showed that the ordering degree of CoPt and coercivity of CoPt-TiO2 nanocomposites increased with annealing temperature. Increasing annealing time and Ag addition were able to increase the ordering degree and coercivity of CoPt. However, complete L10-ordering of CoPt at 550 °C annealing was not realized by increasing annealing time up to 30 min and Ag addition up to 30 vol.%. Increasing TiO2 volume fraction at 700 °C annealing did not lead to the change of ordering of CoPt. However, the grain structure of the films changed slightly when TiO2 volume fraction was larger than 56%. The coercivity of the film decreased slightly with the addition of TiO2.  相似文献   

20.
This study investigated the effects of ZnSe nanoparticles (NPs) on the structural and (linear and nonlinear) optical properties of polyvinyl alcohol (PVA) thin film. Three samples of ZnSe NP-doped PVA thin films with different concentrations of ZnSe were produced on a glass substrate. The ZnSe NPs were synthesized by pulsed laser ablation of the ZnSe bulk target immersed in distilled water using a 1064 nm wavelength and a high frequency pulsed Nd:YAG laser. The optical bandgap energies of the films were extracted from their UV-Vis-NIR absorption spectra. The corresponding energy bandgaps of the nanocomposite films declined as the ZnSe NPs doping concentration increased. X-ray diffraction analysis was used to characterize the crystalline phases of the ZnSe/PVA nanocomposite films. The concentration-dependent nonlinear optical absorption and nonlinear refraction behaviors of the films after exposure to 532-nm nanosecond laser pulses were investigated using the Z-scan technique. The nonlinear absorption response of the films was positive when measured using an open aperture scheme, which was attributed to the two-photon absorption mechanism. In addition, the nonlinear refraction indices had a negative value and they increased as the concentration of ZnSe NPs in the films increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号