首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
One of the principal proposed biophysical mechanisms put forward to explain the avian magnetic compass sense centres around magnetically sensitive chemistry. Based on a large number of in vitro studies of the effects of applied magnetic fields on the yields and rates of chemical reactions it has been suggested that the anisotropic magnetic interactions in spin-correlated radical pairs could be the source of the directional information that allows migratory birds to use the Earth's magnetic field as a navigational aid. Here numerical quantum mechanical simulations are employed to explore the possibility that the hitherto neglected nuclear quadrupole interaction may provide directional information in a radical pair magnetoreceptor. It is concluded that although nuclear quadrupole interactions could fulfil this function, they are unlikely to influence significantly the reaction yield anisotropy in the flavin-tryptophan radical pair that has been proposed as the in vivo magnetoreceptor.  相似文献   

2.
The quantum states and energy spectrum of an electron in a rectangular step quantum well in a magnetic field parallel to the plane of two-dimensional electronic gas are investigated. It is shown that the joint effect of a magnetic field and confining potential of quantum well results in radical change of the electron energy spectrum. The energy dependencies on the parameters of the quantum well and magnetic field induction are investigated. Numerical calculations are carried out for an AlAs/ GaAlAs/ GaAs/ AlAs step quantum well.  相似文献   

3.
The combined effects of an in-growth direction applied electric field and hydrostatic pressure on the exciton binding energy and photoluminescence energy transitions are reported in this work for triple vertically coupled quantum dots. The calculations have been carried out within the effective mass approximation, and using a variational procedure. The results show that the exciton binding energy and the photoluminescence energy transitions are functions of external probes like the hydrostatic pressure and the applied electric field.  相似文献   

4.
The photoinduced electron transfer (PET) reaction within a ternary copper complex [Cu(phen)(Htrp)]+ (Htrp: l-tryptophanato; phen: 1,10-phenanthroline) (1) and in presence of DNA has been studied in homogeneous buffer medium and in reverse micelles. An intramolecular electron transfer occurs within the photoexcited complex (1) from tryptophan to phen. The copper complex can displace ethidium bromide from DNA backbone and on photoexcitation can oxidize DNA in a deoxygenated environment due to intermolecular electron transfer, although the intramolecular electron transfer is thermodynamically favorable. A prominent magnetic field effect (MFE) has been found even in homogeneous aqueous medium for the triplet born radicals both in case of intra and intermolecular electron transfer reactions. In case of intramolecular electron transfer the observation of MFE is similar to that of linked donor-acceptor system. However the observation of MFE for the intermolecular electron transfer between non-covalently bound complex-DNA systems is rather rare. Some non-covalent weak interaction, e.g. hydrophobic interaction between the phen ligand and DNA base pairs and electrostatic force of attraction between [Cu(phen)(Htrp)]+ complex and DNA may lead to partial intercalation of the copper complex within DNA that is responsible for such a rare observation.  相似文献   

5.
Semiclassical calculations of reaction probabilities have been carried out for the collinear H + F2 (n = 0, 1) reaction using the best extended LEPS surface No. II of Jonathan et al. Both real and complex valued classical trajectories have been included in the calculations for an energy range where the quasiclassical total reaction probability is unity. Comparison with quantum results shows the semiclassical reaction probabilities are accurate to about ± 0·05 provided only two real or complex stationary phase points make an important contribution to the S matrix element, so that the uniform Airy or integer Bessel approximations are valid. Real semiclassical calculations are also reported for the collinear Mu, D, T + F2 (n = 0) reactions. For the D and T reactions, the semiclassical reaction probabilities are estimated to be accurate to ± 0·05, except close to the reaction threshold, but for the Mu reaction the estimated errors are much larger. In addition, quasiclassical calculations for the reaction probabilities have been carried out using half integer boxing and smooth sampling methods to quantize the product distributions. For the H + F2 reaction, there are usually systematic deviations from the quantum reaction probabilities and the same is expected to be true for the Mu, D and T reactions.  相似文献   

6.
激光引发自由基反应磁效应的光谱学研究   总被引:1,自引:0,他引:1  
“动态自旋化学”(dynamic spin chemistry)作为一门新兴的交叉研究领域,其重要性已得到广泛的共识。涉及的研究内容包括: 化学反应的磁效应(MFE)、同位素效应(MIE)、化学诱导动态核极化(CIDNP)和化学诱导动态电子极化(CIDEP)。文章简要介绍了激光引发自由基反应的磁效应发展历史及其光谱学研究方法。分析并总结了自由基反应磁效应产生的原因、单-三转换理论及磁效应机理。同时,也为国内同行介绍了自由基反应磁效应研究新的发展动态。  相似文献   

7.
The magnetic field effects (MFEs) on the electron transfer reactions from indole derivatives to flavin derivatives in micellar solutions are studied. The MFEs on the free radical yields observed by transient absorption (TA) reflect effectively the association of the donor and acceptor molecules with the micelles. In the system of riboflavin and indole, the MFE increases rapidly with increasing concentration of sodium dodecyl sulfate (SDS) higher than the critical micellar concentration. In contrast, in the system of flavin mononucleotide and indole, the increase of MFE is very slow even at higher concentrations of SDS. This result shows that riboflavin is well associated with the SDS micelle and the diffusion process of the radical pair is restricted by the micellar cages. The MFE in the system of riboflavin and indole is twice as large as that of riboflavin and tryptophan. This result shows the difference of the dynamics of radicals in micelles. The escape rate of the cation radical generated from tryptophan is much faster than that generated from indole. The dependence of the MFEs on the type of surfactant is studied. The effect of the Coulomb force between the ionic reactant molecules and the charged head group of the surfactant and the effect of the molecular size are discussed by comparison of the MFE intensities.  相似文献   

8.
The magnetic field effect (MFE) on the radical pair (RP) generated by photoexcitation of the acetyl derivative of phenyl pyrylium ion (APP+) in the presence of biphenyl, an electron donor, has been investigated. The escape yield at 3.5 T is more than ten times the zero-field value. The MFE reaches near-saturation twice, once at fields of the order of 10mT and again at about 3.5 T. The low-field variation of the MFE conforms to the pattern expected for the isotropic HFC mechanism, and the high-field variation to that expected for the relaxation mechanism. In this particular system two types of radical pair are generated, one by electron transfer from the donor to the acceptor and another by H-abstraction from the micelle. The MFEs on the two types of 3RP have been compared.  相似文献   

9.
马廷锋  张超  冯冠平  江小宁 《中国物理 B》2010,19(8):87701-087701
In this work, bulk acoustic wave propagation properties of langasite single crystal excited by lateral electric field have been investigated. Three important crystal cuts have been identified for different operational modes of lateral field excitation (LFE) on langasite substrate, namely the (yxl)65o (pure-LFE mode), (yxl)45o (quasi-LFE mode), and (yxl)0o (pseudo-LFE mode). Devices on langasite substrate with the above cuts were fabricated and tested, and the experimental results agree well with the theoretical analysis. It is found that a pure thickness shear mode exists in the (yxl)65o langasite LFE device with the bare side facing liquid, and no spurious mode is found due to its moderately large piezoelectric coupling factor. In addition, (yxl)0o langasite LFE device is also found suitable for liquid phase sensing applications.  相似文献   

10.
A theoretical analysis is presented of the problem of how distance-dependent electron transfer in photoinduced forward electron transfer followed by geminate backward electron transfer in liquid solution is reflected in the viscosity dependence of the magnetic field effect (MFE) on the efficiency of free radical formation (φce) in such reactions. The stochastic Liouville equation formalism is employed to model the reaction behaviour of distance-distributed, triplet-born radical pairs (RPs) undergoing free diffusion, distance- and spin-dependent backward electron transfer, coherent and incoherent spin evolution in the ps time domain. In comparison with real systems the spin situation is simplified by reducing it to a two state (S, T 0) problem, yet it is parametrized in a way that allows sensible comparison of the results with those of recent experiments. It is predicted that the MFE on φce exhibits characteristic minima in the MFE versus viscosity curves, and it is verified in detail that this feature is peculiar to the diffusional model with distance-dependent electron transfer, i.e. cannot be reproduced with the simpler (‘exponential’) RP model employing distance-independent rate constants. Thus, the MFE versus viscosity curves are established as a genuine fingerprint of distance-dependent electron transfer. The theoretical results compare favourably with recent experimental results obtained with RuIII complex/methylviologen RPs.  相似文献   

11.
Recent progress in the field of binary collision induced spectra of nonpolar gases and mixtures in the far infrared (FIR) region of the spectrum includes accurate measurements of a variety of molecular systems and temperatures, and rigorous quantum calculations. The latter are based on the isotropic potential approximation and either on ab initio induced dipole data obtained with highly correlated wavefunctions, or on the classical multipole induction model. The contributions of both free pairs of molecules in collisional interaction, and bound pairs (van der Waals molecules), are accounted for in equilibrium proportions. The effects of the anisotropy of the intermolecular interaction potential on the spectra are also being understood in quantitative terms. On an absolute intensity scale, the agreement of theory with the laboratory measurements is typically well within the uncertainties of the measurements if all theoretical dimer features are flattened by convolution with with an instrumental profile of 10 or 20 cm–1 width; certain dimer features have been seen in the FIR spectra of the atmospheres of the outer planets and their big moons. For astrophysical and other applications, the results of the quantum computations have been cast into simple analytical expressions which reproduce collision induced spectra accurately as function of frequency and temperature on computers of small capacity in seconds for a selection of molecular systems.  相似文献   

12.
The ultraviolet spectrum of acetone in vacuum and in aqueous solution has been computed by different quantum mechanical methods coupled to the polarizable continuum model (PCM) for describing bulk solvent effects. The results in vacuo show that the time-dependent density functional theory (TDDFT) approach using the PBEO functional reproduces quite well the result obtained at the CASPT2 level. Supermolecule computations confirm that water molecules belonging to the first shell of polar groups (here the carbonyl oxygen) must be explicitly included in the quantum mechanical treatment, whereas the effect of other solvent molecules (which is far from being negligible) can be reliably described by the PCM. Moreover, statistical averaging effects have been taken into account by performing canonical molecular dynamics (MD) simulations followed by TDDFT quantum mechanical computations on representative clusters of increasing dimensions immersed in a polarizable continuum. The results show that the combined MD/DFT/PCM approach is reliable and effective, although the performances of the force field used in the MD simulations must be further investigated.  相似文献   

13.
New infrared (for gas and liquid phase) and Raman (for liquid) spectra were measured for the chlorotrimethylgermane to obtain a complete assignment of its fundamental modes. The measurement of the low‐temperature infrared spectrum together with the application of Fourier self‐deconvolution to the Raman spectra resolves the C H vibrational modes into their components. The Rauhut and Pulay scaled quantum mechanical (SQM) force field methodology and the wavenumber‐linear scaling (WLS) method were used to predict the vibrational spectra as a guide to the assignment of the fundamental bands. A quantum mechanical analysis was carried out to obtain the harmonic force field. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Computer analysis of near and far-field intensities in zinc oxide based quantum dot nanostructure has been carried out for the optimization of smaller active region volume of quantum dot to achieve desired modal gain. Near and far-field intensity distribution along junction plane has been studied as a function of mole fractions of Mg and for varying quantum dot thickness. Solutions to the wave equations have been obtained for the transverse electric mode. Effective index method has been used to deduce the propagation constants in various regions of optical wave-guide. Excellent confinement of near field intensity for greater values of Mg composition has been attributed to the increased values of refractive index step between dot and barrier regions. For the thicker dots, greater fraction of the optical field has been confined to the dot region. Near field intensity spread has been deduced and articulated in terms of full width of half maximum (FWHM) as a function of Mg mole fraction and a dot thickness. It clearly shows nonlinear decrease with increase of both the Mg mole fraction and a dot thickness. The surface image clearly reveals a bright spot in the center corresponding to far-field emitted from the dot region at 375-nm wavelength. Far-field intensity reveals divergence of 16°.  相似文献   

15.
16.
We have presented a model of two consecutive pairs of triplet excitons, which consists of a succession of two pairs known as short pair and long pair with reference to their respective lifetimes. We have applied this model to the modulation of prompt fluorescence (PF) in crystalline tetracene by a static magnetic field (MFE) and a microwave field (F-ODMR). The two types of experiments have been enough perfectly reproduced by using the same set of kinetics constants. Thus, we have arrived to rise the inconsistencies which one reproached the Seventies kinetic model.  相似文献   

17.
The FT-IR, FT-Raman and FT-NMR spectra of the compound 4-(4-Fluoro-phenyl)-1H-imidazole (4-FPI) were recorded and analyzed. Density functional method (B3LYP level with the 6–311G(d, p) and 6–311++G(d, p) and cc-pVQZ as basis sets) has been used to compute optimized geometry, vibrational wavenumbers of the 4-FPI. Only one tautomeric form was found most stable by using DFT/B3LYP. The detailed interpretation of the vibrational spectra was carried out with the aid of total energy distribution following the scaled quantum mechanical force field methodology. Potential Energy Surface scan studies has also been carried out by ab initio calculations with the same basis sets.  相似文献   

18.
Raman measurements on Gillette foam have been carried out to analyze different phases of water in the system. We have shown that in addition to free water molecules, which drain out with aging of foam, water clusters of only a few water molecules are also present in foam. We have analyzed the rate of drainage with the existing theory available in the literature. The nature of water clusters in Gillette foam has also been obtained from ab initio self‐consistent field calculations for [H2O]n clusters. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
Dual level of quantum mechanical calculations have been carried out for hydrogen abstraction from Piperazine [HN(CH2CH2)2NH] initiated by OH radical. Geometry optimisation and frequency calculations of all species involved in the titled reaction have been performed at M06-2X/6-31+G(d,p) level of theory. For the accuracy in the thermochemistry and kinetics data, single-point energy calculations have been further carried out at coupled cluster CCSD(T) method along with 6-311G(d,p) basis set. An energy profile diagram for the reaction has been plotted along with pre-reactive and post-reactive complexes at entrance and exit channels. Intrinsic reaction coordinates (IRCs) calculations have been performed for identification of real transition states that connect it via reactant to product. Our result shows that the H-atom abstraction takes place from the C–H position of Piperazine. The rate constant is calculated using canonical transition state theory (CTST) is found to be 2.86 × 10?10 cm3 molecule?1 s?1 which is in good agreement with the reported experimental rate constant (2.38 ± 0.28) × 10?10 cm3 molecule?1 s?1 at 298 K. We have also reported rate constant for the temperature range 300–500 K. Using group-balance isodesmic reaction, the standard enthalpies of formation for Piperazine and product radicals generated by hydrogen abstraction are reported. The branching ratios for both reaction channel (i.e. H-abstraction from –CH2 and –NH position of Piperazine) are found to be 93% and 7%, respectively. The calculated atmospheric life time of Piperazine is found to be 0.97 hour.  相似文献   

20.
ABSTRACT

We have investigated the performance of different multi-reference quantum chemical methods with regard to electronic excitation energies and spin–orbit matrix elements (SOMES). Among these methods are two variants of the combined density functional theory and multi-reference configuration interaction method (DFT/MRCI and DFT/MRCI-R) and a multi-reference second-order Møller–Plesset perturbation theory (MR-MP2) approach. Two variants of MR-MP2 have been tested based on either Hartree–Fock orbitals or Kohn–Sham orbitals of the BH-LYP density functional. In connection with the MR-MP2 approaches, the first-order perturbed wave functions have been employed in the evaluation of spin–orbit coupling. To validate our results, we assembled experimental excitation energies and SOMES of eight diatomic and fifteen polyatomic molecules. For some of the smaller molecules, we carried out calculations at the complete active space self-consistent field (CASSCF) level to obtain SOMEs to compare with. Excitation energies of the experimentally unknown states were assessed with respect to second-order perturbation theory corrected (CASPT2) values where available. Overall, we find a very satisfactory agreement between the excitation energies and the SOMEs obtained with the four approaches. For a few states, outliers with regard to the excitation energies and/or SOMEs are observed. These outliers are carefully analysed and traced back to the wave function composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号