首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Shubnikov-de Haas (S-dH) results at 1.5 K for AlxGa1−xN/AlN/GaN heterostructures and the fast Fourier transformation data for the S-dH data indicated the occupation by a two-dimensional electron gas (2DEG) of one subband in the GaN active layer. Photoluminescence (PL) spectra showed a broad PL emission about 30 meV below the GaN exciton emission peak at 3.474 eV that could be attributed to recombination between the 2DEG occupying in the AlN/GaN heterointerface and photoexcited holes. A possible subband structure was calculated by a self-consistent method taking into account the spontaneous and piezoelectric polarizations, and one subband was occupied by 2DEG below the Fermi level, which was in reasonable agreement with the S-dH results. These results can help improve understanding of magnetotransport, optical, and electronic subband properties in AlxGa1−xAs/AlN/GaN heterostructures.  相似文献   

2.
Electron–electron interaction effect of the two-dimensional electron gas (2DEG) in AlxGa1−xN/GaN heterostructures has been investigated by means of magnetotransport measurements at low temperatures. From the temperature dependence of the longitudinal conductivity of the heterostructures, a clear transition region has been observed. Based on the theoretical analysis, we conclude that this region corresponds to the transition from the diffusive regime to the ballistic regime of the 2DEG transport property. The interaction constant is determined to be −0.423, which is consistent with the theoretical prediction. However, the critical temperature for the transition, which is 8 K in AlxGa1−xN/GaN heterostructures, is much higher than the theoretical prediction.  相似文献   

3.
By solving the Schrödinger and Poisson equations self-consistently, changes of the Rashba spin splitting for the Al0.3Ga0.7N/GaN heterostructure under uniaxial strain are calculated, and electrons are found to take up the first two subbands. The additional polarization induced by the uniaxial strain leads to a great enhancement of the built-in electric field and the 2DEG concentration. The Rashba spin splitting almost increases linearly with the uniaxial strain, and its amplitude increases by 36% with a strain of 4×10−3. The effect of electrons occupying more than one subband on the Rashba spin splitting is discussed. Results show the internal electric field caused by the polarization is crucial for the considerable Rashba spin splitting in the Al0.3Ga0.7N/GaN heterostructure and the magnitude of the Rashba spin splitting can be greatly modulated by the uniaxial strain, which would benefit further research and application of spintronics.  相似文献   

4.
We present numerical optimization of carrier confinement characteristics in (AlxGa1−xN/AlN)SLs/GaN heterostructures in the presence of spontaneous and piezoelectrically induced polarization effects. The calculations were made using a self-consistent solution of the Schrödinger, Poisson, potential and charge balance equations. It is found that the sheet carrier density in GaN channel increases nearly linearly with the thickness of AlN although the whole thickness and equivalent Al composition of AlxGa1−xN/AlN superlattices (SLs) barrier are kept constant. This result leads to the carrier confinement capability approaches saturation with thicknesses of AlN greater than 0.6 nm. Furthermore, the influence of carrier concentration distribution on carrier mobility was discussed. Theoretical calculations indicate that the achievement of high sheet carrier density is a trade-off with mobility.  相似文献   

5.
The effect of hydrogen on donors and interface defects in silicon modulation doped AlxGa1−xAs/InyGa1−yAs/GaAs heterostructures has been investigated by photoluminescence (PL). Hydrogenation was carried out on two sets of samples, one set consists of high quality pseudomorphic heterostructures and another set having partially lattice relaxed structures prone to the defects. On exposure of high quality pseudomorphic structures to hydrogen plasma above 150 °C, a significant blue shift in the PL peak positions as well as bandwidth narrowing is observed. This indicates, the reduction in two-dimensional electron gas in the InyGa1−yAs quantum well due to hydrogen passivation of silicon donors in the AlxGa1−xAs supply layer. The reactivation of the donors is observed upon annealing the hydrogenated sample for 1 h at 250 °C under hydrogen ambient. Another interesting feature is a significant improvement in the PL of lattice-relaxed structures upon hydrogenation of the samples above 250 °C, which is attributed to the hydrogen passivation of interface defects due to the misfit dislocations.  相似文献   

6.
We investigate the structural and electrical properties of AlxIn1xN/AlN/GaN heterostructures with AlGaN buffers grown by MOCVD, which can be used as an alternative to AlInN HEMT structures with GaN buffer. The effects of the GaN channel thickness and the addition of a content graded AlGaN layer to the structural and electrical characteristics were studied through variable temperature Hall effect measurements, high resolution XRD, and AFM measurements. Enhancement in electron mobility was observed in two of the suggested AlxIn1?xN/AlN/GaN/Al0.04Ga0.96N heterostructures when compared to the standard AlxIn1xN/AlN/GaN heterostructure. This improvement was attributed to better electron confinement in the channel due to electric field arising from piezoelectric polarization charge at the Al0.04Ga0.96N/GaN heterointerface and by the conduction band discontinuity formed at the same interface. If the growth conditions and design parameters of the AlxIn1?xN HEMT structures with AlGaN buffers can be modified further, the electron spillover from the GaN channel can be significantly limited and even higher electron mobilities, which result in lower two-dimensional sheet resistances, would be possible.  相似文献   

7.
(Ga1−xMnx)N/GaN digital ferromagnetic heterostructures (DFHs) and (Ga1−xMnx)N/GaN grown on GaN buffer layers by using molecular beam epitaxy have been investigated. The photoluminescence (PL) spectra showed band-edge exciton transitions. They also showed peaks corresponding to the neutral donor-bound exciton and the exciton transitions between the conduction band and the Mn acceptor, indicative of the Mn atoms acting as substitution. The magnetization curves as functions of the magnetic field at 5 K indicated that the saturation magnetic moment in the (Ga1−xMnx)N/GaN DFHs decreased with increasing Mn mole fraction and that the saturation magnetic moment and the coercive field in the (Ga1−xMnx)N/GaN DFHs were much larger than those in (Ga1−xMnx)N thin films. These results indicate that the (Ga1−xMnx)N/GaN DFHs hold promise for potential applications in spintronic devices.  相似文献   

8.
Semiconductor optoelectronic devices based on GaN and on InGaN or AlGaN alloys and superlattices can operate in a wide range of wavelengths, from far infrared to near ultraviolet region. The efficiency of these devices could be enhanced by shrinking the size and increasing the density of the semiconductor components. Nanostructured materials are natural candidates to fulfill these requirements. Here we use the density functional theory to study the electronic and structural properties of (10,0) GaN, AlN, AlxGa1 − xN nanotubes and GaN/AlxGa1 − xN heterojunctions, 0<x<1. The AlxGa1 − xN nanotubes exhibit direct band gaps for the whole range of Al compositions, with band gaps varying from 3.45 to 4.85 eV, and a negative band gap bowing coefficient of −0.14 eV. The GaN/AlxGa1 − xN nanotube heterojunctions show a type-I band alignment, with the valence band offsets showing a non-linear dependence with the Al content in the nanotube alloy. The results show the possibility of engineering the band gaps and band offsets of these III-nitrides nanotubes by alloying on the cation sites.  相似文献   

9.
Tunneling induced electron transfer in SiNx/Al0.22Ga0.78N/GaN based metal-insulator-semiconductor (MIS) structures has been investigated by means of capacitance-voltage (C-V) measurements at various temperatures. Large clock-wise hysteresis window in C-V profiles indicates the injection of electrons from the two-dimensional electron gas (2DEG) channel to the SiNx layer. Depletion of the 2DEG at positive bias in the negative sweeping direction indicates that the charges injected have a long decay time, which was also observed in the recovery process of the capacitance after injection. The tunneling induced electron transfer effect in SiNx/Al0.22Ga0.78N/GaN based MIS structure opens up a way to design AlxGa1−xN/GaN based variable capacitors and memory devices.  相似文献   

10.
The effects of the In-mole fraction (x) of an InxGa1−xN back barrier layer and the thicknesses of different layers in pseudomorphic AlyGa1−yN/AlN/GaN/InxGa1−xN/GaN heterostructures on band structures and carrier densities were investigated with the help of one-dimensional self-consistent solutions of non-linear Schrödinger-Poisson equations. Strain relaxation limits were also calculated for the investigated AlyGa1−yN barrier layer and InxGa1−xN back barriers. From an experimental point of view, two different optimized structures are suggested, and the possible effects on carrier density and mobility are discussed.  相似文献   

11.
We show that the large band offsets between GaN and InN and the heavy carrier effective masses preclude the use of the virtual crystal approximation to describe the electronic structure of Ga1−xInxN/GaN heterostructures, while this approximation works very well for the Ga1−xInxAs/GaAs heterostructures.  相似文献   

12.
By the method of finite difference, the anisotropic spin splitting of the AlxGa1-xAs/GaAs/Aly Ga1-yAs/AlxGal-xAs step quantum wells (QWs) are theoretically investigated considering the interplay of the bulk inversion asymmetry and structure inversion asymmetry induced by step quantum well structure and external electric field. We demonstrate that the anisotropy of the total spin splitting can be controlled by the shape of the QWs and the external electric field. The interface related Rashba effect plays an important effect on the anisotropic spin splitting by influencing the magnitude of the spin splitting and the direction of electron spin. The Rashba spin splitting presents in the step quantum wells due to the interface related Rashba effect even without external electric field or magnetic field.  相似文献   

13.
The subband structure and occupation in the triangular quantum well at Al x Ga1−x N/GaN heterointerfaces have been investigated by means of temperature dependent Shubnikov–de Haas (SdH) measurements at low temperatures and high magnetic fields under illumination. After the illumination of the heterostructures, the total two-dimensional electron gas concentration increases, and the SdH oscillation amplitudes are enhanced when there is no additional subband occupation. It is also found that the energy separation between the subbands decreases after the illumination. We suggest that the illumination decreases the electric field and thus weakens the quantum confinement of the triangular quantum well at Al x Ga1−x N/GaN heterointerfaces. The GaN layer is thought to be the primary contributor of the excited electrons by the illumination.  相似文献   

14.
Effects of the passivation of SiNx on the high temperature transport characteristics of the two-dimensional electron gas (2DEG) in unintentionally doped AlxGa1−xN/GaN heterostructures have been investigated by means of high temperature Hall measurements. The 2DEG density increases much after SiNx passivation, and the increment is proportional to the Si content in SiNx layer, indicating that the increment is mainly caused by ionized Si atoms at the SiN/AlxGa1−xN interface with dangling bonds or by Si atoms incorporated into the AlxGa1−xN layer during the SiNx growth, which is approved by strain analysis and X-ray photoemission spectroscopy (XPS). There is lower 2DEG mobility at room temperature in a passivated sample than in an unpassivated one. However, the 2DEG mobility becomes to be higher in a passivated sample than in an unpassivated one when the temperature is above 250 °C, which is suggested to be caused by different subband occupation ratios in the triangular quantum well at the heterointerface before and after passivation.  相似文献   

15.
The two-dimensional (2D) electron energy relaxation in Al0.25Ga0.75N/AlN/GaN heterostructures was investigated experimentally by using two experimental techniques; Shubnikov-de Haas (SdH) effect and classical Hall Effect. The electron temperature (Te) of hot electrons was obtained from the lattice temperature (TL) and the applied electric field dependencies of the amplitude of SdH oscillations and Hall mobility. The experimental results for the electron temperature dependence of power loss are also compared with the current theoretical models for power loss in 2D semiconductors. The power loss that was determined from the SdH measurements indicates that the energy relaxation of electrons is due to acoustic phonon emission via unscreened piezoelectric interaction. In addition, the power loss from the electrons obtained from Hall mobility for electron temperatures in the range Te > 100 K is associated with optical phonon emission. The temperature dependent energy relaxation time in Al0.25Ga0.75N/AlN/GaN heterostructures that was determined from the power loss data indicates that hot electrons relax spontaneously with MHz to THz emission with increasing temperatures.  相似文献   

16.
The electronic and structural properties of zigzag aluminum nitride (AlN), gallium nitride (GaN) nanoribbons and AlxGa1−xN nanoribbon heterojunctions are investigated using the first-principles calculations. Both AlN and GaN ribbons are found to be semiconductor with an indirect band gap, which decreases monotonically with the increased ribbon width, and approaching to the gaps of their infinite two dimensional graphitic-like monolayer structures, respectively. Furthermore, the band gap of AlxGa1−xN nanoribbon heterojunctions is closely related to Al (and/or Ga) concentrations. The AlxGa1−xN nanoribbon of width n=8 shows a continuously band gap varying from about 2.2 eV-3.1 eV as x increases from 0 to 1. The large ranged tunable band gaps in such a quasi one dimension structure may open up new opportunities for these AlN/GaN based materials in future optoelectronic devices.  相似文献   

17.
宋杰  许福军  黄呈橙  林芳  王新强  杨志坚  沈波 《中国物理 B》2011,20(5):57305-057305
The temperature dependence of carrier transport properties of AlxGa1-xN/InyGa1-yN/GaN and AlxGa1-xN/GaN heterostructures has been investigated.It is shown that the Hall mobility in Al0.25Ga0.75N/In0.03Ga0.97N/GaN heterostructures is higher than that in Al0.25Ga0.75N/GaN heterostructures at temperatures above 500 K,even the mobility in the former is much lower than that in the latter at 300 K.More importantly,the electron sheet density in Al0.25Ga0.75N/In0.03Ga0.97N/GaN heterostructures decreases slightly,whereas the electron sheet density in Al0.25Ga0.75N/GaN heterostructures gradually increases with increasing temperature above 500 K.It is believed that an electron depletion layer is formed due to the negative polarization charges at the InyGa1-yN/GaN heterointerface induced by the compressive strain in the InyGa1-yN channel,which e-ectively suppresses the parallel conductivity originating from the thermal excitation in the underlying GaN layer at high temperatures.  相似文献   

18.
GaN layers and Al1−xInxN/AlN/GaN heterostructures have been studied by scanning probe microscopy methods. Threading dislocations (TDs), originating from the GaN (0 0 0 1) layer grown on sapphire, have been investigated. Using Current-Atomic Force Microscopy (C-AFM) TDs have been found to be highly conductive in both GaN and AlInN, while using semi-contact AFM (phase-imaging mode) indium segregation has been traced at TDs in AlInN/AlN/GaN heterostructures. It has been assessed that In segregation is responsible for high conductivity at dislocations in the examined heterostructures.  相似文献   

19.
林芳  沈波  卢励吾  马楠  许福军  苗振林  宋杰  刘新宇  魏珂  黄俊 《中国物理 B》2010,19(12):127304-127304
In contrast with Au/Ni/Al 0.25 Ga 0.75 N/GaN Schottky contacts,this paper systematically investigates the effect of thermal annealing of Au/Pt/Al 0.25 Ga 0.75 N/GaN structures on electrical properties of the two-dimensional electron gas in Al 0.25 Ga 0.75 N/GaN heterostructures by means of temperature-dependent Hall and temperature-dependent current-voltage measurements.The two-dimensional electron gas density of the samples with Pt cap layer increases after annealing in N 2 ambience at 600℃ while the annealing treatment has little effect on the two-dimensional electron gas mobility in comparison with the samples with Ni cap layer.The experimental results indicate that the Au/Pt/Al 0.25 Ga 0.75 N/GaN Schottky contacts reduce the reverse leakage current density at high annealing temperatures of 400-600℃.As a conclusion,the better thermal stability of the Au/Pt/Al 0.25 Ga 0.75 N/GaN Schottky contacts than the Au/Ni/Al 0.25 Ga 0.75 N/GaN Schottky contacts at high temperatures can be attributed to the inertness of the interface between Pt and AlxGa1-xN.  相似文献   

20.
We have calculated the spectral regime of subband transitions in AlxGa1−xN/GaN and AlxGa1−xN/InN single quantum wells. We used a simplified model to account for the internal electric fields, which modify the shape of the quantum well. Some of the parameters for these materials have not yet been firmly established. Therefore, we carried out the analysis for the extremes of the reported values of conduction band discontinuities and band gaps (in the case of InN). This analysis shows that the spectral regime of interband transitions for 1–4 nm thick wells has wavelengths above 0.5 μm for AlGaN/InN and above 0.8 μm for AlGaN/GaN and both heterostructures cover several μm wavelengths. The spectral variation with alloy composition is less pronounced in the AlxGa1−xN/InN single quantum wells due to the higher electric field present across the InN quantum well as compared to GaN. The results of these calculations are in good agreement with more rigorous theoretical approaches and available experimental values for AlxGa1−xN/GaN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号