首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
2.
The effect of bone structure on ultrasonic attenuation and velocity   总被引:4,自引:0,他引:4  
The relationship between the structure of bovine cancellous bone, and its ultrasonic propagation parameters is investigated by means of a novel technique involving the application of large static loads, thereby changing the porosity in a controlled manner. The results show that for frequencies in the range 0.4 to 1 MHz, porosity decreases up to 35% are associated with a reduction in attenuation of up to 500%, whereas the velocity increases by roughly 35% for the same changes. The data taken overall suggest that in determining the ultrasonic attenuation coefficient at these frequencies, the amount of material in a given bone section is significantly less important than the distribution of that material.  相似文献   

3.
The propagation of broadband ultrasonic pulses in combined media that consist of printing paper of different porosity saturated with different liquids is studied. The experiments are performed with three types of paper, namely, Zoom Ultra (Stora Enso, Finland) with surface densities of 80 and 100 g/m2 and Data Copy (Mo Do, Sweden) with a surface density of 160 g/cm2, and with two types of saturating liquids: ethanol and transformer oil. To excite ultrasonic pulses and to detect them with a high time resolution, the laser optoacoustic spectroscopy method is used. For each type of liquid-saturated paper, the phase velocity of ultrasound is measured in the frequency range of 5–35 MHz. The absence of any noticeable frequency dispersion of the phase velocity is revealed. The possibility of measuring the porosity of printing paper on the basis of the theoretical model of a two-phase medium with the use of the corresponding experimental data is demonstrated.  相似文献   

4.
J Jellins  G Kossoff 《Ultrasonics》1973,11(5):223-226
Present ultrasonic echography techniques measure the time of arrival of echoes and display this as distance, using the assumption that the velocity of propagation in the tissues is constant and equal to that in the water-coupling medium. The average velocity of ultrasound in the breast ranges from 1 430–1 560 m s?1 between patients and this variation is sufficient to degrade the quality of compound scanned echograms. A method of electronic compensation has been developed which compensates for linear displacement, thus improving the resolution and allowing more precise interpretation of the structure of the breast.  相似文献   

5.
The industry of ornamental rocks, such as granites, represents one of the most important industrial activities in the region of Extremadura, SW Spain. A detailed knowledge of the intrinsic properties of this natural stone and its environmental evolution is a required goal in order to fully characterize its quality. In this work, two independent NDT acoustic techniques have been used to measure the acoustic velocity of longitudinal waves in different prismatic granitic-samples of industrial quarries. A low-frequency transceiver set-up, based on a high-voltage BPV Steinkamp instrument and two 50 kHz probes, has been used to measure pulse travel times by ultrasonic through-transmission testing. In complementary fashion, an Erudite MK3 test equipment with an electromagnetic vibrator and two piezoelectric sensors has also been employed to measure ultrasonic velocity by means of a resonance-based method, using the same types of granite varieties. In addition, a comprehensive set of physical/mechanical properties have also been analyzed, according to Spanish regulations in force, by means of alternative methods including destructive techniques such as strength, porosity, absorption, etc. A large number of samples, representing the most important varieties of granites from quarries of Extremadura, have been analyzed using the above-mentioned procedures. Some results obtained by destructive techniques have been correlated with those found using ultrasonic techniques. Our experimental setting allowed a complementary characterization of granite samples and a thorough validation of the different techniques employed, thus providing the industry of ornamental rocks with a non-destructive tool that will facilitate a more detailed insight on the properties of the rocks under study.  相似文献   

6.
Schubert F  Koehler B 《Ultrasonics》2004,42(1-9):781-786
Certain aspects of diffusive ultrasound fields in concrete are still unknown and thus, systematic parameter studies using numerical time-domain simulations of the ultrasonic propagation process could lead to further insights into theoretical and experimental questions. In the present paper, the elastodynamic finite integration technique (EFIT) is used to simulate a diffusive reverberation measurement at a concrete specimen taking aggregates, pores, and viscoelastic damping explicitly into account. The numerical results for dissipation and diffusivity are compared with theoretical models. Moreover, the influence of air-filled pores in the cement matrix is demonstrated.  相似文献   

7.
通过声速测定实验仪及数字示波器等装置测量了超声波在岩石中的传播速度,并对岩石成分、孔隙度、吸水量以及岩石温度等参数对超声波传播速度的影响进行了分析.结果表明,岩石孔隙度对超声波传播速度影响较大.同时,超声波传播速度随着岩石吸水量和环境温度的升高,传播速度呈现增大趋势.  相似文献   

8.
The effect of anisotropy and temperature on the dispersive Lamb wave generation and propagation in a transversely isotropic thin plate has been investigated. A quantitative numerical model for the laser-generated transient ultrasonic Lamb waves propagating along arbitrary directions is presented by using a finite-element method. All factors, such as spatial and time distributions of the incident laser beam, optical penetration, thermal diffusivity, thickness of the plate, and source–receiver distance, can be taken into account. The effects on the ultrasound waveform of the size of the optoacoustic source are investigated; in the limit of strong optical absorption, a subsurface thermal source gives rise to both vertical and lateral shear tensions. The lateral shear tension is equivalent to applying a shear dipole at the top face; the amplitude of the dipole is a function of material symmetry, contrary to the isotropic case, and the character and strength of the equivalent surface stress are a function of propagation direction. The specific results for the lower anti-symmetric and symmetric mode propagation in all planar directions are presented in the thermoelastic regime; the spatial dispersion (variation of the velocity with the direction of propagation) as well as the frequency dispersion is analyzed. PACS 43.35.+d; 02.70.Dh; 42.62.-b; 78.20.Nv; 81.70.Cv  相似文献   

9.
为了深入研究不同入射频率下超声波纵波在砂岩中的传播特性,以灰、红、褐砂岩为研究对象,开展了基于50 k Hz、100 kHz、200 kHz、500 kHz和1000 kHz入射频率的超声波纵波测试。提取纵波波速、幅值衰减系数、主频幅值、波形能量这些声学参数,结合入射频率和砂岩孔隙率进行传播特性的相关性分析。结果表明,在3种砂岩中,纵波波速随入射频率增大呈非线性增长趋势,砂岩种类不同,波速增长规律也不同;波形能量和主频幅值随入射频率呈指数关系降低;灰、红砂岩纵波波速随孔隙率越大,下降速率越大,褐砂岩在同级孔隙率下波速差异性明显。建立了基于3种砂岩的入射频率和幅值衰减系数的回归方程;基于200 kHz的入射频率,建立了砂岩孔隙率于波形能量的回归方程,实际测试中建议采用200 kHz作为入射频率,可较好兼顾检测的灵敏度和探测距离。研究成果为建立声学参数与砂岩抗压强度之间的内在联系提供了更多数据支撑,为实际物探测试中超声波入射频率的选择提供参考。  相似文献   

10.
Variation of the velocity of ultrasound propagation in polycrystalline aluminum under plastic deformation is studied. The dependences of the velocity of ultrasound on the strain and the actual stress are found to consist of three distinct stages. The study of the complex shapes of these dependences allows one to reveal additional stages in the parabolic stress-strain curve of the plastic flow, these features being impossible to observe by conventional methods. The behavior of the ultrasonic velocity observed in the experiment is explained by the changes in the defect structure of the material under deformation.  相似文献   

11.
吴文华  翟薇  胡海豹  魏炳波 《物理学报》2017,66(19):194303-194303
针对合金熔体等液体材料的超声处理过程,选取水作为透明模型材料,采用数值模拟计算和示踪粒子实验方法,研究了20和490 kHz两种频率超声作用下水中的声场和流场分布.结果表明,增大变幅杆半径能够提高水中声压水平,扩大空化效应的发生区域.当超声频率为20 kHz时,水中声压最大值出现在超声变幅杆下端面处,且声压沿传播距离的增大而显著减小.如果超声频率增加至490 kHz,水中的声压级相比于20 kHz时明显提高,且声压沿着超声传播方向呈现出周期性振荡特征.两种频率超声作用下水中的流场呈现相似的分布特征,且平均流速均随着变幅杆半径增大表现出先升高后降低的趋势.变幅杆半径相同时,20 kHz频率超声作用下水中的平均流速高于490 kHz频率超声.采用示踪粒子图像测速技术实时观察和测定了水中的流速分布,发现其与计算结果基本一致.  相似文献   

12.
The influence of the volumetric porosity of isotropic metal-matrix composite materials, which are reinforced with ceramic microparticles, on the dispersion of the phase velocity of longitudinal acoustic waves is investigated. For this purpose, the method of broadband acoustic spectroscopy with a laser source of ultrasound and piezoelectric detection of nanosecond ultrasonic pulses is used. Composite samples based on a silumin matrix with added silicon carbide (SiC) microparticles in different mass concentrations (3.8–15.5%) were investigated. As the concentration of SiC particles in a sample increases, its porosity that is determined using the hydrostatic-weighing method also increases. The simultaneous increase in the filler concentration and porosity leads to the appearance of a dispersion of the phase velocity of longitudinal acoustic waves in the sample within the frequency range of 3–25 MHz. The obtained empirical relationship between the relative change in the phase velocity and the sample porosity can be used to obtain a proximate quantitative estimate of the bulk porosity of the isotropic metal-matrix composite materials.  相似文献   

13.
Ultrasound as pre-treatment for drying of pineapple   总被引:2,自引:0,他引:2  
Dehydration of fruits is an alternative to reduce post-harvest loss of fruits and also a process to produce dried fruits, which can be directly consumed or become part of foodstuffs like cakes, pastries and many others. The effect of ultrasonic pre-treatment and ultrasound-assisted osmotic dehydration, before air-drying, on dehydration of pineapple (Ananas comosus) was investigated. This study allowed estimating the water diffusivity in the air-drying process for pineapples submitted to ultrasound. Results showed that the water diffusivity increased after application of ultrasound and that the overall drying time was reduced by 8% (over 1h of air-drying time). During the ultrasonic treatment in distilled water the pineapples lost sugar (23.2% in 30 min), so in this condition the ultrasonic pre-treatment can be an interesting process to produce dried fruits with low sugar content. Results showed that the water loss increased with increasing soluble solids content of the osmotic solution and that the ultrasound-assisted osmotic dehydration incorporated more sugar than conventional osmotic dehydration. The water effective diffusivity of the pineapples during the air-drying process was influenced by the pre-treatment, increasing the water effective diffusivity when ultrasound was applied.  相似文献   

14.
Nerve-muscle preparations of Sprague Dawley rats were exposed to low dosage ultrasound. The objectives were to measure the velocity of propagation and attenuation of ultrasonic energy in both the relaxed and contracted states. A tension-measuring system and associated ultrasonic instrumentation were designed to measure the tension developed in stimulated muscle and its corresponding acoustic parameters, ie the attenuation coefficient, (db cm-1) and the velocity of propagation, c (ms-1). Each test was performed at ultrasonic frequencies 3.1, 5.35, and 7.68 MHz and with the preparation maintained at 23 ± 0.5° C. Attenuation of ultrasonic energy was observed to increase by 10 ± 0.5% in the active state from its value in the relaxed state. The relation between the attenuation and the acoustic frequency was found to be approximately linear over the frequency range tested. The velocity of propagation in the active state did not change appreciably from its value in the relaxed state and was observed to be independent of the acoustic frequency in the range used.  相似文献   

15.
Taking into account the effects of thermal diffusion and optical penetration, as well as the finite width and duration of the laser source, the laser-generated ultrasonic force source at surface vicinity is presented. The full acoustic fields of laser-generated ultrasonic bulk wave are obtained and displayed in transversely isotropic plate. The features of laser-generated ultrasound bulk waves are analyzed. The features of laser-generated ultrasonic bulk wave are in good agreement with the theoretical results (the phase velocity surfaces), demonstrating the validity of this simulation. The numerical results indicate that the features of laser-generated ultrasound waveforms in anisotropic specimen, different from the case in isotropic materials, have a close relation with the propagating plane and propagation direction. This method can provide insight to the generation and propagation of laser-generated ultrasonic bulk wave in transversely isotropic material.  相似文献   

16.
In this paper an ultrasonic technique, usually used in non-destructive-testing (NDT), is applied to the monitoring of alcoholic wine fermentation. This technique consists in placing a test tube, containing the analyzing fluid, between two matched ultrasonic piezoelectric transducers, one used as transmitter and the other as receiver. The transmitter generates an ultrasonic wave in the liquid sample which is received by the receiver; the attenuation and the delay of the received signal in respect to the transmitted one are used to characterize the testing fluid. As first experiments this technique was applied to some test solutions of saccharose in water, ethanol in water and of both solvents in water, in order to evaluate the method applicability and resolution. Best results are obtained by the propagation velocity measurement, with a resolution less than 2%. The method was then applied to monitor the wine fermentation: the propagation velocity in the must was measured every day and the results were related to chemical analyses. The obtained results show that the propagation velocity has the same behaviour of the saccharose concentration, putting in evidence the possibility of monitoring the process state by measuring the ultrasound propagation velocity.  相似文献   

17.
In this study a theoretical approach for the estimation of ultrasonic attenuation is proposed. The approach combines two models which take into account both absorption and scattering. Attenuation due to absorption is studied by using the Biot’s analytical model whereas that due to scattering is described by means of a generalized weak scattering model which is formulated for binary mixtures. The scattering model takes account of the density fluctuation of the porous medium in addition to the propagation velocity fluctuation. For the calculation of the attenuation coefficient due to absorption, experimental values have been used to link size of pores to porosity. The theoretical results have been compared with experimental data obtained on bovine cancellous bone samples filled with water. Using an immersion acoustic transmission method, the ultrasonic attenuation has been measured at a frequency range between 0.1 and 1.0 MHz for 12 bovine cancellous bone samples with a porosity range between 40% and 70%. The prediction of attenuation with this model appears to correspond more closely to its experimentally observed behavior. This study indicates that scattering is the predominant mechanism which is responsible for attenuation in trabecular bone. Furthermore, it shows that the density fluctuations contribute significantly to the phenomenon of attenuation and cannot thus be neglected.  相似文献   

18.
Opielinski KJ  Gudra T 《Ultrasonics》2004,42(1-9):705-711
The paper presents the method of the three-dimensional reconstruction of biological objects' internal structure heterogeneity based on the ultrasonic examination of a woman's breast biopsy phantom. The phantom is made of quasi-homogeneous dense gel in which drops of lesions, characterized by fixed sizes and two different acoustic impedances, were dipped at random. For the purpose of this research a special measurement setup was elaborated, enabling a non-invasive in vitro imaging of biological objects' internal structure in cross-sections for fixed levels, by means of ultrasound transmission tomography (UTT) using the parallel-ray projection geometry of scanning. The two-dimensional images of the local values of ultrasonic wave's propagation velocity in the phantom's internal structure (ultrasonic tomograms) were reconstructed for fixed levels (by using the convolution and back-projection algorithm) from the measurements of average values of ultrasonic signals' runtime propagated from many directions around the object dipped in water. Analyzing the values of particular pixels and using an appropriate image processing technique, in effect the three-dimensional image of heterogeneity boundaries in the examined phantom's internal structure was computer-reconstructed. The obtained results are compatible with the specification provided by the phantom's producer in terms of sizes and acoustic parameters of lesions, which can simulate pathological changes and of the gel imitating the healthy tissue. It means that the method presented, after an appropriate modification and development of the measurement setup with an aim to accelerate the object scanning process and thus provide an opportunity for non-invasive in vivo examinations, could be applied for detecting and diagnosing tumors in women's breasts.  相似文献   

19.
In this paper, an original method of evaluating the physical properties of wheat-flour-water systems using high-frequency low-power ultrasound is presented. Most of the experiments were performed with a reflectance technique measuring the acoustic impedance of doughs. The velocity of propagation, attenuation and viscoelastic moduli have been evaluated for both compressional and shear ultrasonic waves in the interval 2-10 MHz for doughs of different hydrations. The 53% water content was found to be critical with respect to the presence of free water. The influence of the mixing and rest times on the longitudinal ultrasonic parameters is also studied.  相似文献   

20.
In view of the various novel quantitative ultrasonic evaluation techniques developed using Lamb wave propagation, the influence of an important related phenomenon, backward transmission, is investigated in this paper. Using the discrete layer theory and a multiple integral transform method, the surface displacement and velocity responses of isotropic plates and cross-ply laminated composite plates due to the Lamb waves excited by parabolic- and piston-type transmitting transducers are evaluated. Analytical expressions for the surface displacement and velocity frequency response functions are developed. Based on this a large volume of calculations is carried out. Through examining the characteristics of the surface displacement and velocity frequency response functions and, especially, the different propagation modes' contributions to them, the influence of the backward wave transmission related to quantitative ultrasonic nondestructive evaluation applications is discussed and some important conclusions are drawn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号