首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper investigate the effect of slip boundary condition, thermal radiation, heat source, Dufour number,chemical reaction and viscous dissipation on heat and mass transfer of unsteady free convective MHD flow of a viscous fluid past through a vertical plate embedded in a porous media. Numerical results are obtained for solving the nonlinear governing momentum, energy and concentration equations with slip boundary condition, ramped wall temperature and ramped wall concentration on the surface of the vertical plate. The influence of emerging parameters on velocity,temperature and concentration fields are shown graphically.  相似文献   

2.
王胜  徐进良  张龙艳 《物理学报》2017,66(20):204704-204704
采用分子动力学方法研究了流体在非对称浸润性粗糙纳米通道内的流动与传热过程,分析了两侧壁面浸润性不对称对流体速度滑移和温度阶跃的影响,以及非对称浸润性组合对流体内部热量传递的影响.研究结果表明,纳米通道主流区域的流体速度在外力作用下呈抛物线分布,但是纳米通道上下壁面浸润性不对称导致速度分布不呈中心对称,同时通道壁面的纳米结构也会限制流体的流动.流体在流动过程中产生黏性耗散,使流体温度升高.增强冷壁面的疏水性对近热壁面区域的流体速度几乎没有影响,滑移速度和滑移长度基本不变,始终为锁定边界,但是会导致近冷壁面区域的流体速度逐渐增大,对应的滑移速度和滑移长度随之增大.此时,近冷壁面区域的流体温度逐渐超过近热壁面区域的流体温度,流体出现反转温度分布,流体内部热流逆向传递.随着两侧壁面浸润性不对称程度增加,流体反转温度分布更加明显.  相似文献   

3.
张程宾  许兆林  陈永平 《物理学报》2014,63(21):214706-214706
为研究粗糙表面对纳尺度流体流动和传热及其流固界面速度滑移与温度阶跃的影响,本文建立了粗糙纳通道内流体流动和传热耦合过程的分子动力学模型,模拟研究了粗糙通道内流体的微观结构、速度和温度分布、速度滑移和温度阶跃并与光滑通道进行了比较,并分析了固液相互作用强度和壁面刚度对界面处速度滑移和温度阶跃的影响规律. 研究结果表明,在外力作用下,纳通道主流区域的速度分布呈抛物线分布,由于流体流动导致的黏性耗散使得纳通道内的温度分布呈四次方分布. 并且,在固体壁面处存在速度滑移与温度阶跃. 表面粗糙度的存在使得流体剪切流动产生了额外的黏性耗散,使得粗糙纳通道内的流体速度水平小于光滑通道,温度水平高于光滑通道,并且粗糙表面的速度滑移与温度阶跃均小于光滑通道. 另外,固液相互作用强度的增大和壁面刚度的减小均可导致界面处速度滑移和温度阶跃程度降低. 关键词: 速度滑移 温度阶跃 流固界面 粗糙度  相似文献   

4.
The purpose of the present paper is to investigate the flow and heat transfer of a double fractional Maxwell fluid with a second order slip model. The fractional governing equations are solved numerically by using the finite difference method. By comparing the analytical solutions of special boundary conditions, the validity of the present numerical method is examined. The effects of the two slip parameters and the fractional parameters on the velocity and temperature distribution are presented graphically and discussed. The results reveal that the fractional Maxwell fluid exhibits a stronger viscosity or elasticity for different fractional parameters, and the oscillation phenomenon will gradually decrease as expected with an increase in slip parameters.  相似文献   

5.
The effects of variable fluid properties and variable heat flux on the flow and heat transfer of a non-Newtonian Maxwell fluid over an unsteady stretching sheet in the presence of slip velocity have been studied. The governing differential equations are transformed into a set of coupled non-linear ordinary differential equations and then solved with a numerical technique using appropriate boundary conditions for various physical parameters. The numerical solution for the governing non-linear boundary value problem is based on applying the fourth-order Runge-Kutta method coupled with the shooting technique over the entire range of physical parameters. The effects of various parameters like the viscosity parameter, thermal conductivity parameter, unsteadiness parameter, slip velocity parameter, the Deborah number, and the Prandtl number on the flow and temperature profiles as well as on the local skin-friction coefficient and the local Nusselt number are presented and discussed. Comparison of numerical results is made with the earlier published results under limiting cases.  相似文献   

6.
A novel finite volume method is developed to investigate the axisymmetric convection flow and heat transfer of fractional viscoelastic fluid past a vertical cylinder. Fractional cylindrical governing equations are formulated by fractional Maxwell model and generalized Fourier's law. The velocity slip and temperature jump boundary conditions are considered across the fluid-solid interface. Numerical results are validated by exact solutions of special case with source terms. The effects of fractional derivative parameter and boundary condition parameters on flow and heat transfer characteristics are discussed. The viscoelastic fluid performs evident shear thickening property in the fractional Maxwell constitutive relation. Moreover, the boundary condition parameters have remarkable influence on velocity and temperature distributions.  相似文献   

7.
This study scrutinizes the flow of engine oil-based suspended carbon nanotubes magneto-hydrodynamics (MHD) hybrid nanofluid with dust particles over a thin moving needle following the Xue model. The analysis also incorporates the effects of variable viscosity with Hall current. For heat transfer analysis, the effects of the Cattaneo-Christov theory and heat generation/absorption with thermal slip are integrated into the temperature equation. The Tiwari-Das nanofluid model is used to develop the envisioned mathematical model. Using similarity transformation, the governing equations for the flow are translated into ordinary differential equations. The bvp4c method based on Runge-Kutta is used, along with a shooting approach. Graphs are used to examine and depict the consequences of significant parameters on involved profiles. The results revealed that the temperature of the fluid and boundary layer thickness is diminished as the solid volume fraction is raised. Also, with an enhancement in the variable viscosity parameter, the velocity distribution becomes more pronounced. The results are substantiated by assessing them with an available study.  相似文献   

8.
梅涛  陈占秀  杨历  王坤  苗瑞灿 《物理学报》2019,68(9):94701-094701
纳米流动系统具有高效、经济等优势,在众多领域具有广泛的应用前景.因该类系统具有极高的表面积体积比,致使界面滑移效应对流动具有显著影响.本文采用分子动力学方法以两无限大平行非对称壁面组成的Poiseuille流动为对象,分析了壁面粗糙度与润湿性变化对通道内流体流动的影响.对于不同结构类型的壁面,需要通过水动力位置来确定固液界面位置,准确计算固液界面位置有助于更好地分析界面滑移效应.研究结果表明,上下壁面不对称会引起通道内流场参数分布的不对称,壁面粗糙度及润湿性的变化会影响近壁面附近流体原子的流动特性,由于壁面凹槽的存在,粗糙壁面附近的数密度分布低于光滑壁面一侧.壁面粗糙度及润湿性的变化会影响固液界面位置,肋高变化及壁面润湿性对通道中速度分布影响较大,界面滑移速度及滑移长度随肋高和润湿性的增大而减小;肋间距变化对通道内流体流动影响较小,界面滑移速度和滑移长度基本保持恒定.  相似文献   

9.
许少锋  楼应侯  吴尧锋  王向垟  何平 《物理学报》2019,68(10):104701-104701
了解疏水表面的滑移规律对其在流动减阻方面的应用至关重要.利用耗散粒子动力学(dissipative particle dynamics, DPD)方法研究了微通道疏水表面的滑移现象.采用固定住的粒子并配合修正的向前反弹机制,构建了DPD固体壁面边界模型,利用该边界模型模拟了平板间的Couette流动.研究结果表明,通过调整壁面与流体间排斥作用强度,壁面能实现从无滑移到滑移的转变,壁面与流体间排斥作用越强,即疏水性越强,壁面滑移越明显,并且滑移长度与接触角之间存在近似的二次函数关系.无滑移时壁面附近密度分布均匀,有滑移时壁面附近存在低密度区域,低密度区域阻碍了动量传递,致使壁面产生滑移.  相似文献   

10.
Radiative heat transfer in the steady two-dimensional flow of Walters' B fluid with a non-uniform heat source/sink is investigated. An incompressible fluid is bounded by a stretching porous surface. The convective boundary condition is used for the thermal boundary layer problem. The relevant equations are first simplified under usual boundary layer assumptions and then transformed into a similar form by suitable transformations. Explicit series solutions of velocity and temperature are derived by the homotopy analysis method(HAM). The dimensionless velocity and temperature gradients at the wall are calculated and discussed.  相似文献   

11.
This article reports the magnetohydrodynamic (MHD) three-dimensional flow of viscoelastic fluid over a stretching surface with heat transfer. Mathematical analysis is formulated using convective boundary conditions. Computations of dimensionless velocity and temperature fields are presented. The tabulated values show excellent agreement between present and previous limiting analysis. Graphical results show the impact of embedded parameters entering into the problem.  相似文献   

12.
In the present contribution, a numerical treatment is provided to describe unsteady nanofluid flow near a vertical heated wavy surface. A memorable feature of the present work is the investigation of nanofluid flow associated with thermal radiation that acts as a catalyst for heat transfer rates. Likewise, the effectiveness of variable viscosity is examined as it controls fluid flow as well as heat transfer. It is necessary to study heat and mass transfer for complex geometries because predicting heat and mass transfer for irregular surfaces is a topic of fundamental importance, and irregular surfaces frequently appear in many applications, such as flat-plate solar collectors and flat-plate condensers in refrigerators. A simple coordinate transformation from the wavy surface into a flat one is employed. The non-dimensional boundary layer equations that governing both heat transfer and nanofluid flow phenomena along the wavy surface are solved via a powerful numerical approach called the implicit Chebyshev pseudospectral (ICPS) method with Mathematica code. A comparison graph of the current numerical computation and the published data shows a perfect match. Figures depict the effect of various physical parameters on nanofluid velocities, temperature, salt concentration, nanoparticle concentration, skin friction, Sherwood, nanoparticle Sherwood, and Nusselt numbers. According to the numerical results, increasing the variable viscosity parameter value causes a drop in the local skin friction coefficient value and an increase in the steady-state axial nanofluid velocity profile near the wavy surface. Furthermore, as heat radiation is increased, the local Nusselt number decreases but the nanoparticle Sherwood number increases.  相似文献   

13.
The forced convection heat transfer and laminar flow in a two-dimensional microchannel filled with a porous medium is numerically investigated. The nano-particles which have been used are multi walled carbon nano-tubes (MWCNT) suspended in oil as the based fluid. The assumption of no-slip condition between the base fluid and nano-particles as well as the thermal equilibrium between them allows us to study the nanofluid in a single phase. The nanofluid flow through the microchannel has been modeled using the Darcy–Forchheimer equation. It is also assumed that there is a thermal equilibrium between the solid phase and the nanofluid for energy transfer. The walls of the microchannel are under the influence of a fluctuating heat flux. Also, the slip velocity boundary condition has been assumed along the walls. The effects of Darcy number, porosity and slip coefficients and Reynolds number on the velocity and temperature profiles and Nusselt number will be studied in this research.  相似文献   

14.
This work is focused on the effect of heat and mass transfer with unsteady natural convection flow of viscous fluid along with ramped wall temperature under the assumption of the slip wall condition at the boundary. Analytical solutions are obtained by using Laplace transformation to the non-dimensional set of governing equations containing velocity, temperature and concentration. Moreover, the expression for skin-friction is derived by differentiating the analytical solutions of fluid velocity. Numerical tables for Skin-friction, Sherwood number and Nusselt-number are examined. For the physical aspects of the flow, we use various values of involved physical parameters such as Prandtl number (Pr), slip parameter ($\eta$), Schmidt number (Sc), buoyancy ratio parameter ($N$), Sherwood number (Sh), and time $(t)$. Additionally, the general solutions are plotted graphically and a comprehensive theoretical section of numerical discussions is included.  相似文献   

15.
滑移流区内微环缝槽道中的层流流动与换热   总被引:7,自引:0,他引:7  
本文针对微环缝槽道采用速度滑移和温度跳跃边界条件求解了不可压缩气体的N-S方程和能量方程,理论分析了微环缝槽道在单侧或双侧不同热流密度加热条件下的流动与层流换热特性,讨论了Kn数、内外径比对流动阻力及换热特性的影响。结果表明:滑移流区微环继通道内的流阻和Nusselt数明显低于连续流区;且随着Kn数的增加,流阻和Nusselt数均减小;但其随内外径比r*的变化趋势与连续流区相似。  相似文献   

16.
Gaseous flow and heat transfer in micro-channels are simulated by the lattice Boltzmann method (LBM). Thermal LB model with viscous heat dissipation has been adopted in the simulation. A new boundary treatment is proposed based on macro variables in order to capture the velocity slip and temperature jump. The numerical results show the velocity and temperature profiles are in agreement with the analytic results in different cases, which exhibits the availability of this model and boundary treatment in describing thermal micro-flow with viscous heat effect. The variation rules of temperature jump with different parameters are also discussed in this study.  相似文献   

17.
姜玉婷  齐海涛 《物理学报》2015,64(17):174702-174702
研究了微平行管道内非牛顿流体––Eyring 流体在外加电场力和压力作用下的电渗流动. 在考虑微尺度效应, 电场作用, 非牛顿特性, 滑移边界等情况下, 建立Eyring流体在微平行管道内电渗流动的力学模型. 通过解线性Possion-Boltzmann方程和Cauchy动量方程, 给出Eyring 流体速度分布的精确解和近似解析解, 并探讨了上述因素对电渗流动的影响. 将电场力和压力对于Eyring流体电渗流动的速度分布的影响进行了比较分析, 得到有意义的结果.  相似文献   

18.
A numerical analysis is developed for incompressible hydromagnetic viscous fluid passed through a curved stretching surface. Fluid saturated by porous space is bounded by curved surface. Term of porous medium is characterized by implementation of Darcy-Forchheimer theory. Adequate similarity variables are implemented to develop a system of non-linear ordinary differential system of equations, which govern the flow behavior. The impact of radiation constraint and Eckert number is incorporated in the energy equation. Numerical scheme based on RKF45 technique is implemented to solve the derived flow model. Prescribed heat flux(PHF) and prescribed surface temperature(PST) boundary conditions are utilized on temperature with Prescribed Surface Concentration(PSC) and Prescribed Mass Flux(PMF)on concentration. Flow behavior is discussed for both the slip and no-slip conditions. Dimensionless physical quantities are presented through graphs and tables.  相似文献   

19.
本文采用格子Boltzmann方法(LBM)对微尺度Couette流的流动及传热进行了模拟.为了获得壁面边界的速度滑移和温度阶跃,在含有粘性热耗散的热格子模型的基础上,提出了一种新的直接基于宏观量的边界处理格式.模拟得到的速度场和温度分布与解析解吻合得相当好,充分说明了本文采用的模型和边界处理的合理性同时在模拟中还发现:对于不同的Kn数,均存在使得其上壁面的温度阶跃为零的临界Ec数,并且其临界值均在3.0附近.  相似文献   

20.
The entrained flow of an electrically conducting non-Newtonian, viscoelastic second grade fluid due to an axisymmetric stretching surface with partial slip is considered. The partial slip is controlled by a dimensionless slip factor, which varies between zero (total adhesion) and infinity (full slip). Suitable similarity transformations are used to reduce the resulting highly nonlinear partial differential equation into an ordinary differential equation. The issue of paucity of boundary conditions is addressed, and an effective numerical scheme has been adopted to solve the obtained differential equation even without augmenting the boundary conditions. The important findings in this communication are the combined effects of the partial slip, magnetic interaction parameter and the second grade fluid parameter on the velocity and skin friction coefficient. It is observed that in presence of slip, the velocity decreases with an increase in the magnetic parameter. That is, the Lorentz force which opposes the flow leads to enhanced deceleration of the flow. Moreover, it is interesting to find that as slip increases in magnitude, permitting more fluid to slip past the sheet, the skin friction coefficient decreases in magnitude and approaches zero for higher values of the slip parameter, i.e., the fluid behaves as though it were inviscid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号