首页 | 本学科首页   官方微博 | 高级检索  
     检索      

纳米通道粗糙内壁对流体流动行为的影响
引用本文:梅涛,陈占秀,杨历,王坤,苗瑞灿.纳米通道粗糙内壁对流体流动行为的影响[J].物理学报,2019,68(9):94701-094701.
作者姓名:梅涛  陈占秀  杨历  王坤  苗瑞灿
作者单位:河北工业大学能源与环境工程学院, 天津 300401
基金项目:国家重点基础研究发展计划(批准号:2018YFB0605101-1)资助的课题.
摘    要:纳米流动系统具有高效、经济等优势,在众多领域具有广泛的应用前景.因该类系统具有极高的表面积体积比,致使界面滑移效应对流动具有显著影响.本文采用分子动力学方法以两无限大平行非对称壁面组成的Poiseuille流动为对象,分析了壁面粗糙度与润湿性变化对通道内流体流动的影响.对于不同结构类型的壁面,需要通过水动力位置来确定固液界面位置,准确计算固液界面位置有助于更好地分析界面滑移效应.研究结果表明,上下壁面不对称会引起通道内流场参数分布的不对称,壁面粗糙度及润湿性的变化会影响近壁面附近流体原子的流动特性,由于壁面凹槽的存在,粗糙壁面附近的数密度分布低于光滑壁面一侧.壁面粗糙度及润湿性的变化会影响固液界面位置,肋高变化及壁面润湿性对通道中速度分布影响较大,界面滑移速度及滑移长度随肋高和润湿性的增大而减小;肋间距变化对通道内流体流动影响较小,界面滑移速度和滑移长度基本保持恒定.

关 键 词:粗糙度  润湿性  界面滑移  分子动力学
收稿时间:2018-11-02

Effect of rough inner wall of nanochannel on fluid flow behavior
Mei Tao,Chen Zhan-Xiu,Yang Li,Wang Kun,Miao Rui-Can.Effect of rough inner wall of nanochannel on fluid flow behavior[J].Acta Physica Sinica,2019,68(9):94701-094701.
Authors:Mei Tao  Chen Zhan-Xiu  Yang Li  Wang Kun  Miao Rui-Can
Institution:School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
Abstract:Flow system on a nano scale, as an effective and economic system, has been widely employed. While on a macroscopic scale, for the non-slip boundary, the velocity of the fluid at the surface is assumed to be consistent with the surface. This approximation may become invalid on a smaller length scale pertinent to the operation of microfluid devices. The interface slip effect has a significant influence on the flow because of its higher ratio of surface to volume. In this paper, the Poiseuille flow, which is composed of two infinite parallel asymmetric walls, is studied by the molecular dynamics method. The influence of wall roughness and surface wettability of channel on fluid flow in the channel are analyzed. The results show that the asymmetric upper and lower wall can lead to an asymmetric distribution of flow parameters. The change of wall roughness and wettability would affect the flow characteristics of fluid atoms near the wall. Due to the influence of wall grooves, the number density distribution near the rough wall is lower than that on the smooth wall side. As the rib height and wall wettability increase, the number density of fluid atoms in the groove increases gradually, and the change of the rib spacing does not substantially affect the number density distribution of fluid atoms near the rough wall. For different structure types of walls, the real solid-liquid boundary positions are determined by simulating the velocity field distribution in the channel under both Couette flow and Poiseuille flow, which can help us to better analyze the interface slip effect. The variation of wall roughness and wettability can affect the position of the solid-liquid interface. The change of rib height and wettability can greatly influence the velocity distribution in channel, and the position of the solid-liquid boundary as well. Conversely, the rib spacing has a less effect on the boundary position. The difference in boundary position can affect the interface slip effect. We can find the slip velocity and the slip length on one side of the rough wall to be smaller than those on the smooth wall side, and as the rib height and wall wettability increase, the slip velocity and the slip length significantly decrease near the rough wall side. The effect of rib spacing on fluid flow is trivial, and the interface slip velocity and length are relatively stable.
Keywords:roughness  wettability  interface slip  molecular dynamics
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号