首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 328 毫秒
1.
研究了基于地基差分吸收光谱技术观测的O_4吸收反演气溶胶光学参量的敏感性.利用大气辐射传输模型McArtim分析了不同波长、不同气溶胶光学参量(光学厚度、边界层高度、单次散射反照率、非对称因子)对O_4吸收(大气质量因子)的影响.结果表明,大气质量因子对中心波长变化不敏感,气溶胶光学厚度和边界层高度对O_4吸收具有重要影响,气溶胶光学厚度从0.1增加到1时,3°仰角测量的大气质量因子减少了28%,边界层高度从0.1km增加到1km,3°仰角测量的大气质量因子增加了9.2%.平纬圈观测模式下O_4吸收对单次散射反照率和非对称因子具有较好的灵敏度,提供了一种基于地基MAX-DOAS观测O_4吸收反演气溶胶光学参量的新方法.  相似文献   

2.
Ring效应是指大气中O2和N2分子对太阳光的转动拉曼散射致使太阳夫琅禾费结构变浅(被填充)的现象。大气气溶胶能够改变光子在大气中的光程和大气散射性质,进而影响到光子发生转动拉曼散射的几率(RSP),最终影响填充效应。通过观测RSP在不同气溶胶状态下的变化,可以反演得到气溶胶参量信息。采用地基多轴差分吸收光谱(multi-axis differential optical absorption spectroscopy, MAX-DOAS)方法在晴朗无云天气下对Ring效应进行了观测,并把测量值和模型值进行了对比,两者一致性较好;选取大气辐射传输模型McArtim研究了在不同大气条件下Ring效应对气溶胶参数等的灵敏度,结果表明在大多数测量情况下,气溶胶光学厚度和边界层高度对RSP影响较大,在90°仰角时,AOD从0.1增加到1,RSP减少了24.6%,边界层高度从1 km增加到3 km,RSP增加了4.4%。研究表明,Ring效应对气溶胶光学厚度和边界层高度较为敏感,这为反演气溶胶的垂直分布提供了一种新方法。  相似文献   

3.
Ring效应是指大气分子对太阳光的转动拉曼散射致使太阳光中夫琅禾费线变浅的现象。气溶胶能够改变光子在大气中的路径和大气散射性质,最终影响夫琅禾费线的填充程度,因此可以通过观测Ring效应强度获取气溶胶信息。分析了Ring效应对气溶胶光学参量(气溶胶光学厚度、单次散射反照率、非对称因子等)的敏感性,发展了一种结合大气辐射传输模型并利用地基多轴差分吸收光谱(MAX-DOAS)仪器观测的Ring效应获取气溶胶光学特性的新方法。将MAX-DOAS反演结果和太阳光度计的观测结果进行了对比,两者一致性较好。研究表明,基于地基MAX-DOAS观测的Ring效应可以实现气溶胶光学特性的探测。  相似文献   

4.
气溶腔是影响气候变化和空气污染的重要因子,在深圳地区展开气溶胶观测实验,可以获得可靠的光学物理特征,进而有助于准确评估气溶胶在新型超极城市区域的气像和环境效应,本文利用2010年12月至2011年8月太阳光度计、黑碳和浊度计等气溶胶观测资料,分析了新型超级城市深圳地区的气溶胶物理光学特性,深圳地区气溶胶呈明显季节变化,冬、春季由于城市污染性气溶胶的影响,气溶胶光学厚度和Angstrom波长指数都较大,夏季受海盐气溶胶的影响,光学厚度较小Angstrom波长指数也较小,光学厚度与Angstrom波长指数对比表明城市综合性污染是引起深圳气溶胶高光学厚度的主要原因,深圳地区气溶胶的散射系数、吸收系数的平均值(标准偏差)分别为178.7×10-6 m-1 (126.6×10-6m-1和32.5×1O-6m 1 (18.1×10-6m1),均低于珠三角腹地多年观测平均值的二分之一和国内其他大型城市观测值,而单次散射反照率为0.81,与珠三角其他地区得到的结果接近.此外,气溶胶吸收、散射和单次散射反照率呈明显日变化,可能主要受大气边界层变化的影响.  相似文献   

5.
杨红龙  李磊  杨溯  卢超  陈星登  刘爱明 《光子学报》2014,41(12):1427-1434
气溶胶是影响气候变化和空气污染的重要因子.在深圳地区展开气溶胶观测实验,可以获得可靠的光学物理特征,进而有助于准确评估气溶胶在新型超极城市区域的气像和环境效应.本文利用2010年12月至2011年8月太阳光度计、黑碳和浊度计等气溶胶观测资料,分析了新型超级城市深圳地区的气溶胶物理光学特性.深圳地区气溶胶呈明显季节变化,冬、春季由于城市污染性气溶胶的影响,气溶胶光学厚度和Angstrom波长指数都较大,夏季受海盐气溶胶的影响,光学厚度较小,Angstrom波长指数也较小.光学厚度与Angstrom 波长指数对比表明城市综合性污染是引起深圳气溶胶高光学厚度的主要原因.深圳地区气溶胶的散射系数、吸收系数的平均值(标准偏差)分别为178.7×10-6 m-1(126.6×10-6 m-1)和32.5×10-6 m-1(18.1×10-6 m-1),均低于珠三角腹地多年观测平均值的二分之一和国内其他大型城市观测值.而单次散射反照率为0.81,与珠三角其他地区得到的结果接近.此外,气溶胶吸收、散射和单次散射反照率呈明显日变化,可能主要受大气边界层变化的影响.  相似文献   

6.
基于组合拟合法的冰晶粒子的光散射计算   总被引:1,自引:0,他引:1  
利用组合拟合法计算了冰晶粒子的单次散射特性。给出了消光效率因子、单次散射反照度及非对称因子的拟合公式,利用拟合公式对有效粒子尺度为20μm和120μm的六种冰晶粒子的消光效率因子、单次散射反照度及非对称因子进行了计算。结果表明,粒子的消光效率因子、单次散射反照率和非对称因子随着入射波长的增加有着较大的起伏,后两者随着波长的增加而变化趋势基本一致;对于单次散射反照率来说,在可见光波段,反照率非常接近于1;在短波段,粒子的非对称因子变化较小,并且随着波长的增加,非对称因子会逐渐增大。  相似文献   

7.
利用离散偶极子近似法分析了一种随机取向旋转椭球体沙尘气溶胶粒子模型在尺度参数变化范围为0.1~23时(波长0.55!m对应有效半径为0.01~2!m)的光学特性,研究了沙尘粒子非球形性程度对其光学特性的影响,并考察了非球形粒子的随机取向能否用等体积球体来代替。就随机取向单分散和多分散旋转椭球体沙尘气溶胶而言,粒子非球形特征越明显,消光效率因子、不对称因子和单次散射反照率基本上偏离其等体积球体越大;对于相同的非球形,不对称因子偏离其等体积球体的相对偏差要比消光效率因子和单次散射反照率要大。非球形粒子的随机取向并不能使其光学特性严格等效为其等体积球体的光学特性。如果粒子形状偏离球体较小,则非球形粒子的随机取向的平均效果能使其消光效率因子、不对称因子和单次散射反照率近似用等体积球体的对应光学参量来等效;而如果粒子形状偏离球形较大,仅有单次散射反照率可以近似用等体积球体的单次散射反照率来等效,例如,轴半径比为16的旋转椭球体沙尘粒子的单次散射反照率偏离其等体积球体仅在3%以内。  相似文献   

8.
司福祺  谢品华  窦科  詹铠  刘宇  徐晋  刘文清 《物理学报》2010,59(4):2867-2872
介绍了基于太阳散射光的被动多轴差分吸收光谱(MAX-DOAS)技术在大气气溶胶光学厚度(aerosol optical density,AOD)监测中的应用. MAX-DOAS根据氧的二聚物(O4)在紫外、可见波段的特征吸收来确定气溶胶参数,实验中利用测量得到的O4在360 nm处斜柱浓度,并结合O4垂直柱浓度基本稳定等信息,在选取合适的气溶胶单次散射反照率、非对称因子及其廓线形状等条件下,基于大气辐射传输模型采用迭代算法解析出大气气溶胶光学厚度. 经过与太阳光度计(CE318)测量结果的对比,两者相关性达到87%. 关键词: 多轴差分吸收光谱 大气气溶胶 光学厚度  相似文献   

9.
研究了多轴差分吸收光谱技术的气溶胶消光系数垂直廓线反演方法,基于非线性最优估算法,通过地基多轴差分吸收光谱仪观测的O4气体差分斜柱浓度,结合大气辐射传输模型,反演气溶胶消光廓线和光学厚度.2017年7月和8月在淮北地区开展了外场观测实验,低仰角(小于15°)的O4差分斜柱浓度模拟结果和测量结果相关性高于0.9,较好反演了对流层的气溶胶状态.研究表明淮北地区夏季气溶胶含量整体较低,出现的两天高值天气(7月24日和8月12日)的光学厚度日均值为0.65和0.59,分别为季节均值的1.6倍和1.4倍.通过气溶胶消光廓线时序图可知,两天的气溶胶高值都位于0.5km以下,污染主要为本地积累产生.  相似文献   

10.
激光雷达探测北京城区夏季大气边界层   总被引:14,自引:0,他引:14  
王珍珠  李炬  钟志庆  刘东  周军 《应用光学》2008,29(1):96-100
为了研究北京城区夏季大气边界层结构变化特征及大气边界层内气溶胶消光特性,2004年8月利用便携式米散射激光雷达对北京城区夏季大气边界层进行了系统观测。反演了观测站上空大气气溶胶的消光特性垂直分布以及大气边界层的高度。分析了气象条件和人类活动对大气边界层结构的影响。观测数据表明: 北京城区夏季大气边界层有明显的日变化特征,早晚比较低,日间有一个从低变高再变低的过程,中午前后达到最高。结合气象参数对测量数据进行的统计分析表明:北京城区夏季大气边界层高度相对稳定,多分布在1.8km以下,平均值为0.68km;大气边界层内存在浓度较高的气溶胶粒子,平均光学厚度(3km以内)在0.30左右。  相似文献   

11.
介绍了基于太阳散射光的被动多轴差分吸收光谱(MAX-DOAS)技术在大气气溶胶光学厚度(aerosol optical density,AOD)监测中的应用. MAX-DOAS根据氧的二聚物(O4)在紫外、可见波段的特征吸收来确定气溶胶参数,实验中利用测量得到的O4在360 nm处斜柱浓度,并结合O4垂直柱浓度基本稳定等信息,在选取合适的气溶胶单次散射反照率、非对称因子及其廓线形状等条件下,基于大气辐射传输模型采用迭代算法解析出大气气溶胶光学厚度. 经过与太阳光度计(CE318)测量结果的对比,两者相关性达到87%.  相似文献   

12.
A method for aerosol extinction profile retrieval using ground-based multi-axis differential optical absorption spectroscopy(MAX-DOAS) is studied, which is based on a look-up table algorithm. The algorithm uses parametric method to represent aerosol extinction profiles and simulate different atmospheric aerosol states through atmospheric radiation transfer model. Based on the method, aerosol extinction profile was obtained during six cloud-free days. The O_4 differential air mass factor(dAMF) measured by MAX-DOAS is compared with the corresponding model results under different atmospheric conditions(R~2= 0.78). The aerosol optical thickness, aerosol weight factor in boundary layer, and the height of the boundary layer are obtained after the process of minimization and look-up table method. The retrieved aerosol extinction in boundary layer is compared with PM2.5 data measured by ground point instrument. The diurnal variation trends of the two methods are in good agreement. The correlation coefficients of the two methods are 0.71 when the aerosol optical thickness is smaller than 0.5. The results show that the look-up table method can obtain the aerosol state of the troposphere and provide validation for other instrument data.  相似文献   

13.
气溶胶垂直廓线是评估污染物来源、输送等途径的必要手段。气溶胶污染对环境和人体健康带来直接的影响。该研究于2019年4-5月,利用中国科学院大气物理研究所(39.98°N,116.39°E)的地基多轴差分光学吸收光谱(MAX-DOAS)仪,对北京地区春季大气光谱垂直廓线进行了观测。凭借MAX-DOAS实时、在线、连续的观测优势,能有效的对气溶胶进行监测。MAX-DOAS基于最优估算法(OEM)以及最小二乘光谱拟合法,并以辐射传输模型SCIATRAN作为前向模型,利用海德堡廓线(HEIPRO)算法反演得到气溶胶消光系数的垂直廓线,通过对气溶胶消光系数在其路径的积分获得气溶胶光学厚度(AOD)。利用地基太阳光度计观测的AOD和高塔观测的颗粒物质量浓度垂直廓线,分别与MAX-DOAS观测的AOD和气溶胶消光系数垂直廓线进行对比,验证MAX-DOAS算法的适用性。研究结果表明,MAX-DOAS与太阳光度计观测AOD结果,相关系数为0.92,斜率为0.89。三层气溶胶消光系数与PM2.5质量浓度的皮尔森相关系数从低处到高处分别达到0.69(60 m),0.77(160 m)和0.75(280 m)。并且,将气溶胶平均消光系数和对应三层(60,160和280 m)的PM2.5平均质量浓度对比,发现两者趋势一致。同样的,为了验证MAX-DOAS是否具备准确识别污染物的长距离输送的能力,我们通过Angstrom指数确定沙尘天气,通过计算梯度理查森数和边界层高度确定静稳天气,分析了在特殊天气条件下,MAX-DOAS能够对沙尘和静稳天气做出及时、准确的响应。分析气溶胶平均消光系数,发现气溶胶垂直廓线随高度升高呈现指数衰减变化的趋势,并且气溶胶消光系数均值在1.5 km高度处约为近地面的50%左右,而在1.5 km以上消光系数会随着高度的增加而快速减小。当高度达到2 km左右时,气溶胶消光系数均值下降到了0.1 km-1。以上结果表明MAX-DOAS探测大气气溶胶垂直廓线具有较高的适用性。  相似文献   

14.
利用差分吸收光谱法测量亚硝酸和反演气溶胶参数   总被引:2,自引:0,他引:2       下载免费PDF全文
郝楠  周斌  陈立民 《物理学报》2006,55(3):1529-1533
利用差分光学吸收光谱仪(DOAS)进行亚硝酸(HONO)气体的测量并同时在固定的波长范围内(3 07—380 nm)反演气溶胶参数包括气溶胶的平均直径、总个数和总比表面积等. 实验结果表 明利用自测的NO2标准吸收截面可以更加准确地拟合HONO的浓度,同时在较短的 波长范围内能准确反演气溶胶参数. 关键词: 差分光学吸收光谱(DOAS) 亚硝酸 气溶胶参数  相似文献   

15.
Aerosol light absorption and its measurement: A review   总被引:1,自引:0,他引:1  
Light absorption by aerosols contributes to solar radiative forcing through absorption of solar radiation and heating of the absorbing aerosol layer. Besides the direct radiative effect, the heating can evaporate clouds and change the atmospheric dynamics. Aerosol light absorption in the atmosphere is dominated by black carbon (BC) with additional, significant contributions from the still poorly understood brown carbon and from mineral dust. Sources of these absorbing aerosols include biomass burning and other combustion processes and dust entrainment.For particles much smaller than the wavelength of incident light, absorption is proportional to the particle volume and mass. Absorption can be calculated with Mie theory for spherical particles and with more complicated numerical methods for other particle shapes.The quantitative measurement of aerosol light absorption is still a challenge. Simple, commonly used filter measurements are prone to measurement artifacts due to particle concentration and modification of particle and filter morphology upon particle deposition, optical interaction of deposited particles and filter medium, and poor angular integration of light scattered by deposited particles. In situ methods measure particle absorption with the particles in their natural suspended state and therefore are not prone to effects related to particle deposition and concentration on filters. Photoacoustic and refractive index-based measurements rely on the heating of particles during light absorption, which, for power-modulated light sources, causes an acoustic signal and modulation of the refractive index in the air surrounding the particles that can be quantified with a microphone and an interferometer, respectively. These methods may suffer from some interference due to light-induced particle evaporation. Laser-induced incandescence also monitors particle heating upon absorption, but heats absorbing particles to much higher temperatures to quantify BC mass from the thermal radiation emitted by the heated particles. Extinction-minus-scattering techniques have limited sensitivity for measuring aerosol light absorption unless the very long absorption paths of cavity ring-down techniques are used. Systematic errors can be dominated by truncation errors in the scattering measurement for large particles or by subtraction errors for high single scattering albedo particles. Remote sensing techniques are essential for global monitoring of aerosol light absorption. While local column-integrated measurements of aerosol light absorption with sun and sky radiometers are routinely done, global satellite measurements are so far largely limited to determining a semi-quantitative UV absorption index.  相似文献   

16.
拉曼-米气溶胶激光雷达因无需假设雷达比,而在准确测量气溶胶消光系数方面较传统米散射雷达更具优势。在合肥市的外场探空比对实验结果表明,2.5 km以下拉曼-米激光雷达反演的消光系数更为准确,相差可达0.04 km-1,且获取的水汽混合比廓线与探空数据一致性良好。利用该技术获得了2019年—2020年秋、冬季期间淮南市的气溶胶消光系数廓线和边界层高度等数据,进而对空气质量污染期间的污染类型(本地污染排放、传输型污染、传输型污染叠加本地污染累积)和颗粒物的时空演变特征进行了统计分析。结果显示该市在此期间受到20次细颗粒传输和8次沙尘传输影响。其中沙尘传输主要来自西北方向,由高空沉降至近地面(厚度达2 km以上),平均大气边界层高度达1.23 km以上。在典型细颗粒传输过程中,边界层高度基本维持在1.1~1.2 km左右,近地面风向以西北风为主,少量东南风主导。在细颗粒传输叠加本地累积的复合污染过程中,边界层高度略低(平均高度在1.0 km左右),近地面风向以偏北风为主,污染气团自低空出现后,其下沿高度持续降低并最终与近地面污染耦合。在细颗粒导致的重污染过程中,近地面水汽混合比及相对湿度数据与PM2.5的浓度变化趋势一致性良好,说明颗粒物的吸湿性增长和气态污染物二次转化过程可能助推了PM2.5的生成,加重污染形势。对边界层的统计结果表明,其高度变化对污染气团的沉降和近地面污染累积有十分明显的正相关性。秋冬季期间,该市的小时边界层高度大部分分布在1.6 km以下,平均为1.0 km左右,小时空气质量达重度污染期间,边界层高度普遍不足0.6 km。从气团后向轨迹模拟结果来看,该市空气质量为中度及以上污染期间的气流主要来自偏北方向,少量来自东南沿线,因而污染期间需要加强市区偏北方向污染源的管控,防止叠加影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号