首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, the electrochemical properties of a carbon paste electrode modified by a synthesized Schiff base, 2,2′-[1,4-phenylenediyl-bis(nitrilomethyl-idene)]-bis(4-hydroxyphenol), and carbon nanotubes were studied by cyclic voltammetry. The modified electrode was used as an electrochemical sensor for catalytic oxidation of dopamine (DA). Differential pulse voltammetry (DPV) of DA by this electrochemical sensor exhibited two linear dynamic ranges with a detection limit (3σ) of 0.42 μM. Also, the selectivity of the prepared electrochemical sensor was checked for determination of DA in the presence of uric acid (UA), folic acid (FA), and acetaminophen (AC). The DPV results indicate that the proposed sensor can be used for simultaneous determination of DA, UA, and FA and also simultaneous determination of DA and AC. Finally, the proposed electrochemical sensor was used for determinations of these substances in real sample.  相似文献   

2.
Suxing Luo  Yuanhui Wu  Hua Gou 《Ionics》2013,19(4):673-680
A voltammetric sensor for the determination of carbendazim was developed at a glassy carbon electrode modified with a hybrid nanomaterial (graphene oxide–multi-walled nanotubes/glassy carbon (GO–MWNTs/GC)). Its surface electrochemical property was studied with UV–Vis spectroscopy, TEM analysis, and electrochemical impedance spectroscopy. The electrochemical behavior of carbendazim was investigated on the modified electrode with cyclic voltammetry and differential pulse voltammetry. The influence of modifier dosage, buffer solution, pH, accumulation time, and scan rates on the determination was discussed. The results indicated that the reaction of carbendazim on the electrode was controlled by diffusion and was an irreversible process with two electrons. The effective area of GO–MWNTs/GC, anodic transfer coefficient, and apparent diffusion coefficient were calculated. The anodic peak current of carbendazim was linear with the concentration of carbendazim from 10 nM to 4 μM with a detection limit of 5 nM (S/N?=?3). The proposed sensor was successfully applied to the determination of carbendazim in soil and tap water.  相似文献   

3.
A novel and convenient electrochemical sensor, based on multi-walled carbon nanotube (MWCNT)–poly-melamine(PMel)–silver nanoparticle (AgNP) composite-modified glassy carbon electrode (GCE), was fabricated for the determination of nitrobenzene (NB). The modified electrode not only played an efficient electrocatalytic role for the reduction of NB but also significantly reduced the overpotential of NB, and the peak current increased greatly compared with bare GCE or other modified electrodes. The excellent performance of NB sensor can be ascribed to the synergistic effect between MWCNT and AgNP. The synergistic effect promoted the electron transfer between MWCNT and AgNP significantly and enhanced the electrochemical reduction ability of NB remarkably. Besides, PMel has huge nitrogen and amine groups, which contributes to the dispersion of silver nanoparticles and also improves the electrocatalytic activity and sensitivity of the sensor. The integration of PMel/MWCNT with AgNP provided a high-performance platform for the NB determination. Under the optimized experimental conditions, the developed sensor showed a wide linear calibration ranges from 20 to 1000 μM and from 1000 to 6000 μM, with a low detection limit (0.55 μM) for the detection of NB. At the same time, the modified electrode exhibited good stability and reproducibility and acceptable selectivity. Moreover, the proposed sensors were successfully employed to determine NB in real samples, and the recoveries were between 97.2 and 104.6 %.  相似文献   

4.
A carbon paste electrode chemically modified with multiwall nanotubes and ethynylferrocene (ETFc) was used as a selective and sensitive electrochemical sensor for the determination of minor amounts of N-acetylcysteine (N-AC) in the presence of a high concentration of tryptophan (Trp). Square wave voltammetry (SWV) of N-AC at the modified electrode exhibited linear dynamic range with a detection limit (3 s) of 0.08 μmol?L?1. The separations of anodic peak potentials of N-AC and Trp reached 400 mV using SWV. With good selectivity and sensitivity, the present method provides a simple method for selective detection of N-AC in real samples such as drug and urine.  相似文献   

5.
A novel carbon paste electrode modified with carbon nanotubes and 5-amino-2′-ethyl -biphenyl-2-ol was fabricated. The electrochemical study of the modified electrode, as well as its efficiency for electrocatalytic oxidation of ascorbic acid (AA), is described. The electrode was employed to study the electrocatalytic oxidation of AA, using cyclic voltammetry, chronoamperometry, and square-wave voltammetry (SWV) as diagnostic techniques. It has been found that the oxidation of AA at the surface of modified electrode occurs at a potential of about 250 mV less positive than that of an unmodified carbon paste electrode. SWV exhibits a linear dynamic range from 2.0?×?10?7 to 5.0?×?10?4 M and a detection limit of 1.0?×?10?7 M for AA. In addition, this modified electrode was used for simultaneous determination of AA, acetaminophen (AC), and tryptophan (TRP). Finally, the modified electrode was used for determination of AA, AC, and TRP in pharmaceutical products.  相似文献   

6.
A carbon paste electrode modified with 5-amino-3??,4??-dimethoxy-biphenyl-2-ol and carbon nanotubes was used for the sensitive voltammetric determination of norepinephrine (NE). The electrochemical response characteristics of the modified electrode toward NE, acetaminophen (AC), and folic acid (FA) were investigated by cyclic and square wave voltammetry (SWV). The results show an efficient catalytic activity of the electrode for the electrooxidation of NE, which leads to lowering its overpotential more than 160?mV. The modified electrode exhibits an efficient electron-mediating behavior together with well-separated oxidation peaks for NE, AC, and FA. Under the optimum pH of 7.0 in 0.1?M phosphate buffer solution, the SWV anodic peak current showed a linear relation vs. NE concentration in the range of 15.0 to 1,000.0???M with a detection limit of 8.0???M.  相似文献   

7.
Gold nanoparticles (AuNPs)–polyvinylpyrrolidone (PVP)–graphene (Gr) nanohybrids were prepared by a facile one-pot green strategy. The obtained Au–PVP–Gr composites were characterized by scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. Then, a novel electrochemical sensor for highly sensitive and selective detection of tert-butylhydroquinone (TBHQ) is proposed based on cetyltrimethyl-ammonium bromide (CTAB) and Au–PVP–Gr modified glassy carbon electrode (GCE). Due to the synergistic effect of CTAB and Au–PVP–Gr, the developed sensor displays a wide linear range from 0.02 to 0.1 and 0.1 to 100.0 μM. A low detection limit of 0.009 μM was observed. Further, the sensitivity and selectivity of PVP–CTAB/Au–PVP–Gr/GCE was demonstrated by its practical application in the determination of TBHQ in real samples.  相似文献   

8.
In this work, a ZnO/nanoparticles (NPs) modified carbon ionic liquid paste electrode (ZnO/NP/CILPE) was fabricated and used to investigate the electrochemical behavior of folic acid. ZnO/NP/CILPE was prepared by mixing hydrophilic ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([C4mim]-[PF6])), ZnO/NPs, graphite powder, and liquid paraffin together. The fabricated ZnO/NP/CILPE showed great electrocatalytic ability to the oxidation of folic acid, and an irreversible oxidation peak appeared at 0.75 V (vs. Ag/AgCl) with improved peak current. Under the optimized conditions of pH 9.0, the plot of peak current vs. folic acid concentration consisted of two linear segments with slopes of 1.776and 0.033 μA/μM in the concentration ranges of 0.05–1.5 μM and 1.5–550.0 μM, respectively. The detection limit was 0.01 μM (3σ). The proposed sensor was successfully applied for the determination of folic acid in fortified food and pharmaceutical samples.  相似文献   

9.
A sensitive and selective electrochemical Pb2+ sensor consisting of a gold-carbon foam/chitosan/gold (Au-CFs/Chit/Au)-modified electrode was prepared. The electrode was synthesized via an oil-in-water emulsion polymerization and carbonization approach. Phenolic resins were used as a carbon source. HAuCl4 was used as a gold source and as an acidic catalyst. Melamine was used as a coordination and coupling agent to control the size of the Au nanoparticles (AuNPs). The morphologies and microstructures of the Au-CFs were characterized using scanning electron microscopy, X-ray diffraction, and transmission electron microscopy. The results revealed that the carbon foams contained interconnected macropores with diameters of nearly 5.0 μm and AuNPs with mean diameters of approximately 20.0, 9.0, and 7.0 nm. Brunauer–Emmett–Teller analysis revealed that the biggest surface area is 653.82 m2/g for Au/CFs-7. The electrochemical properties of modified electrodes and their responses to Pb2+ were characterized using cyclic voltammetry and differential pulse anodic stripping voltammetry. The influence of the test conditions were studied to optimize operational parameters such as the choice of supporting electrolyte, pH, deposition potential, and deposition time. Under optimal conditions, typical Au/CFs-7-modified gold electrodes exhibited an excellent electrochemical response for Pb2+ with a wide linear response range from 0.01 to 1.2 μM, a correlation coefficient of 0.995, and a lower limit of detection of 0.63 nM with deposition time of 180 s (S/N?=?3).  相似文献   

10.
In the present paper, the use of a carbon paste electrode modified with 1-(4-(1, 3-dithiolan-2-yl)-6, 7-dihydroxy-2-methyl-6, 7-dihydrobenzofuran-3-yl)ethanone (DDE) and TiO2 nanoparticles prepared by a simple and rapid method was described. The modified electrode showed excellent properties for electrocatalytic oxidization of epinephrine (EP), acetaminophen (AC) and folic acid (FA). The apparent charge transfer rate constant, k s?=?1.14 s?1, and transfer coefficient, α?=?0.54, for electron transfer between the modifier and carbon paste electrode were calculated. It has been found that under optimum condition (pH?=?7.0) in cyclic voltammetry, the oxidation of EP occurs at a potential about 280 mV less positive than that of an unmodified carbon paste electrode. The values of transfer coefficients (α?=?0.46), catalytic rate constant (k?=?1.2?×?104 M?1 s?1) and diffusion coefficient (D?=?2.70?×?10?5 cm2 s?1) were calculated for EP. Differential pulse voltammetry (DPV) exhibited two linear dynamic ranges of 0.5 to 50.0 μM and 50.0 to 1,000 μM for EP. This modified electrode is quite effective not only for the detection of EP, AC and FA but also for the simultaneous determination of these species in a mixture. The limit of detection for EP, AC and FA is 0.10, 1.80 and 2.36 μM, respectively.  相似文献   

11.
A novel carbon paste electrode modified with graphene nanosheets and an ionic liquid (n-hexyl-3-methylimidazolium hexafluoro phosphate) was fabricated and used for the electrochemical study of mangiferin for the first time. This modified electrode offers a considerable improvement in voltammetric sensitivity toward mangiferin, compared to the bare electrode. Square wave voltammetry (SWV) exhibits a linear dynamic range from 5.0?×?10?8 to 2.0?×?10?4 M and a detection limit of 20.0 nM for mangiferin. Finally, the proposed method was successfully applied to the determination of mangiferin in real samples such as serum and urine.  相似文献   

12.
The electrocatalytic oxidation of l-tyrosine (Tyr) was investigated on a carboxylic acid functionalised multi-walled carbon nanotubes modified carbon paste electrode using cyclic voltammetry and amperometry. The surface morphology of the electrodes was studied using field emission (FE)-SEM images, and the interface properties of bare and modified electrodes were investigated by electrochemical impedance spectroscopy (EIS). The influence of the amount of modifier loading and the variation of the pH of the solution on the electrochemical parameters have been investigated. Cyclic voltammetry was carried out to study the electrochemical oxidation mechanism of Tyr, which showed an irreversible oxidation process at a potential of 637.0 mV at modified electrode. The anodic peak current linearly increased with the scan rate, suggesting that the oxidation of Tyr at modified electrode is an adsorption-controlled process. A good linear relationship between the oxidation peak current and the Tyr concentration in the range of 0.8–100.0 μM was obtained in a phosphate buffer solution at pH 7.0 with a detection limit of 14.0?±?1.36 nM (S/N?=?3). The practical utility of the sensor was demonstrated by determining Tyr in spiked cow’s milk and human blood serum. The modified electrode showed excellent reproducibility, long-term stability and antifouling effects.  相似文献   

13.
The electrochemical detection of dopaminergic agonist drug pramipexole dihydrochloride monohydrate (PPX) has been investigated by cyclic voltammetric (CV) and amperometric it techniques at functionalized multi-walled carbon nanotubes-modified glassy carbon electrode. For the first time, a sensitive and rapid electrochemical method was developed for the determination of PPX. The surface morphological characteristics of the proposed electrode have been studied by using transmission electron microscopy (TEM); further, electrochemical impedance spectroscopy (EIS) and Fourier transform infrared spectroscopy (FTIR) have been employed. PPX shows an irreversible anodic peak, which may be ascribed to the oxidation of the –NH groups of PPX. The proposed method was showing good sensitivity of 0.993 μA μM?1 cm?2 with a linear range of 5 to 340 μM by amperometric it and CV technique shows a linear range of 12.5 to 313 μM with a sensitivity of 1.92 μA μM?1 cm?2. The recovery of PPX from blood serum samples was found 100.6 and 98.9 %, respectively. Furthermore, the proposed method has been demonstrated for the determination of PPX in commercially available pharmaceutical samples and good agreement of results obtained.  相似文献   

14.
Ionic liquid/multiwall carbon nanotubes paste electrode has been used as a novel sensor for the efficient quantitative determination of methyldopa (MDOP) in pharmaceutical and biological samples by using square wave voltammetry. This new sensor shows a better electrochemical response with lower over-potential and high sensitivity for MDOP compared with unmodified carbon paste electrode in physiological condition. The electro-oxidation of MDOP occurred in a pH-dependent 2e? and 2H+ process, and the electrode reaction followed a diffusion-controlled pathway. Under the optimum conditions, the voltammetric oxidation peak current of MDOP showed two linear dynamic ranges with a detection limit of 0.1 μM for MDOP. The novel sensor has been found selective and successfully implemented for the determination of MDOP in real samples such as tablet and patient urine.  相似文献   

15.
An ionic liquid-modified carbon nanotubes paste electrode (IL/CNTPE) has been fabricated using hydrophilic ionic liquid (n-hexyl-3-methylimidazolium hexafluoro phosphate) as a binder. This electrode showed enhanced electrochemical response and strong analytical activity towards the direct electrochemical oxidation of diclofenac (DCF). The electron transfer coefficient, α, and charge transfer resistance (R ct) of DCF at the modified electrode were calculated. Under optimal conditions at pH 7.0, the anodic peak currents increased linearly with the concentration of DCF in the range of 0.5–300 μmol L?1 with a detection limit of 0.2 μmol L?1 (3σ). The interferences of foreign substances were investigated. Differential pulse voltammetry was used to check the applicability of the proposed sensor to the determination of DCF in real samples with satisfactory results.  相似文献   

16.
A modified glassy carbon electrode has been constructed using a 1-benzyl-4-ferrocenyl-1H-[1,2,3]-triazole along with multiwalled carbon nanotubes. The electrochemical behaviour of modified electrode has been investigated by cyclic voltammetry. Electrocatalytic activity of the modified electrode was investigated for the oxidation of hydroxylamine in 0.1 M phosphate-buffered solution of pH 8. The modified electrode showed electrocatalytic response to the oxidation of hydroxylamine at the potential of 330 mV. The linear range and detection limit for the detection of hydroxylamine in the optimum condition were found to be 4.0?×?10?7 to 6.75?×?10?4 M and 28.0?±?1.0 nM, respectively. Finally, the method was employed for the determination of hydroxylamine in water samples.  相似文献   

17.
A sensor for the highly sensitive determination of Sudan I based on the amplified electrochemical response of mesoporous TiO2-decorated graphene (GN–TiO2) was fabricated. The nanoparticles of TiO2 arrayed densely and uniformly on the GN sheets, as confirmed by field emission scanning electron microscopy and transmission electron microscopy images. The electrochemical behavior of Sudan I at this sensor was studied in detail, showing that this sensor exhibited electrocatalytic activity for the oxidation of Sudan I because of the significant peak current enhancement and the lowering of oxidation overpotential. Furthermore, the experimental parameters including supporting electrolyte, volume of GN–TiO2 suspension on electrode surface, accumulation potential, and time were optimized and the electrochemical reaction mechanism of Sudan I on this sensor was investigated. The linear range is from 3.3 nM to 0.66 μM, and the limit of detection is estimated to be 0.60 nM. At last, the sensor was used to determine Sudan I in food sample extracts, which are in good agreement with the results obtained by chromatographic method.  相似文献   

18.
Voltammetric and liquid chromatographic (LC) methods have been developed for the simultaneous determination of amlodipine besylate (AML) and rosuvastatin calcium (ROS) for the first time. Detailed electrochemical behavior and simultaneous voltammetric determination of AML and ROS were investigated in detail using glassy carbon electrode (GCE). High-performance liquid chromatography (HPLC) and ultra-performance liquid chromatography (UPLC) were also developed for the comparison. Voltammetric method exhibited linear dynamic responses for the simultaneous assay of AML and ROS in the concentration range between 0.006 and 2.85 μg/mL and between 0.01 and 5.00 μg/mL, with detection limits of 0.001 and 0.003 μg/mL, respectively. On the other hand, LC methods presented a wider linearity range than that of the SWV method between 0.5 and 100 μg/mL with the detection limits of 0.011 and 0.027 μg/mL for AML and 0.034 and 0.042 μg/mL for ROS by UPLC and HPLC techniques, respectively.  相似文献   

19.
In this study, we describe an ionic liquid–MgO nanoparticle modified carbon paste electrode (MgO/NPs/IL/CPE) was used as a simple, fast, and sensitive tool for the investigation of the electrochemical oxidation of methyldopa (MDOP) using voltammetric methods. The MgO/NPs was characterized with different methods such as TEM, SEM, and XRD. The oxidation peak potential of the MDOP at a surface of MgO/NPs/IL/CPE appeared at 450 mV that was about 100 mV lower than the oxidation peak potential at the surface of the traditional carbon paste electrode (CPE) under similar conditions. The electro-oxidation of MDOP occurred in a pH-dependent 2e? and 2H+ process, and the electrode reaction followed a diffusion-controlled pathway. Under optimal conditions at pH 7.0, the anodic peak currents increased linearly with the concentration of MDOP in the range of 0.08–380 μmol L?1 with a detection limit of 0.03 μmol L?1 (3σ). The proposed sensor was successfully applied to the determination of MDOP in real samples such as drug and urine.  相似文献   

20.
Jing Li  Huaqing Xie 《Ionics》2013,19(1):105-112
A sensitive hydroxylamine sensor is developed by electrodeposition of Pt nanoparticles on pre-synthesized polypyrrole nanoparticles modified glassy carbon electrode. The modified electrode presents distinctly electrocatalytic activity toward hydroxylamine oxidation. The kinetic parameters such as the overall numbers of electrons involved in hydroxylamine oxidation, the electron transfer coefficient, standard heterogeneous rate constant, and diffusion coefficient are evaluated. The current response increases linearly with increasing hydroxylamine concentrations and exhibits two wide linear ranges of 5.0?×?10?7–1.1?×?10?3 and 1.1?×?10?3–18.8?×?10?3 M with a detection limit of 0.08 μM (s/n?=?3). The proposed electrode presents excellent operational and storage ability for determining hydroxylamine. Moreover, the sensor shows good sensitivity, selectivity, and reproducibility properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号