首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
设计了一种基于改进式时间-幅度转换器(Time-Amplitude Converter, TAC)的高精度时间间隔测量系统。该系统采用集成运放设计TAC中的电流可控的恒流源,并对TAC内部的积分控制部分加入宽带直流放大电路,来提高时间间隔测量的精确度;采用高精度的模数转换器采样TAC的输出,实现高精度时间间隔测量中的模拟到数字的转换;采用现场可编程逻辑门阵列(Field Programmable Gate Array, FPGA)完成系统软件设计,实现对TAC的控制。通过变换TAC的采样电阻的阻值,使恒流源输出不同的电流对电容进行充电,从而使TAC的输出电压满足高精度模数转换器(Analog-Digital Converter,ADC)采集电压的要求。实验表明,在测量时间范围为1us,800ns,400ns,200ns时,该系统的时间间隔测量的最小时间精度为400皮秒。  相似文献   

2.
基于FPGA的高精度时间间隔测量方法研究与实现   总被引:2,自引:0,他引:2  
针对脉冲激光测距机的飞行时间间隔测量,介绍了基于FPGA实现高精度时间间隔测量的系统结构及关键技术。利用FPGA内嵌锁相环PLL可得到高速时钟的不同相位输出,可产生稳定的等间隔时间延迟,可实现对短时间间隔的量化测量,达到了优于纳米量级的测量精度。通过与数字插入法相结合,使系统的测量范围达到了200ns~43s。  相似文献   

3.
基于FPGA的时间间隔测量,由于其精度高、成本低、系统结构简单等突出优点,在时间间隔测量领域已成为主要研究方向之一。介绍了一种基于FPGA延迟链差值的时间间隔测量方法,利用片内单元缓冲器与触发器组成的延迟链形成的延迟链差值进行时间间隔测量,整个系统占用了较少的芯片资源。此方法既可为功能电路独立使用,也可通过FPGA中Logic Lock反标注进行系统的移植。此次研究建立在Altera公司的Cyclone系列二代芯片上,时序仿真表明时间间隔测量误差小于1ns,硬件测试精度优于2ns。  相似文献   

4.
脉冲激光测距时间间隔测量技术   总被引:6,自引:1,他引:5       下载免费PDF全文
在脉冲激光测距系统中,为提高时间间隔测量的精度,采用插值法进行时间间隔测量。在分析传统的数字计数法测量原理与误差的基础上,重点研究了插值法。其测量对象针对传统数字计数法中待测脉冲上升沿与下一个量化时钟脉冲上升沿之间的时间间隔。测量采用电容充放电技术,把时间间隔加入到一个时间扩展模块(通常为一只高精度的电容),实现时间上的放大,再对放大后的时间进行测量,可提高时间测量的精度。利用该方法得到的时间间隔测量精度可达到100 ps,对应于1.5 cm的测距精度。  相似文献   

5.
随机脉冲序列的ns级时间检测及峰值检测   总被引:4,自引:2,他引:2       下载免费PDF全文
 利用1 GHz超高速A/D转换单元和现场可编程逻辑门阵列高速处理单元,实现了一种对快反应随机事件转换得到的快逻辑窄脉冲序列进行在线检测的系统。设计了PeakTDC滞回峰值检测算法以求取脉冲的峰值位置,并以峰值位置标定序列中的脉冲时间,进而形成脉冲序列的时间编码及峰值幅度。用实际生成的脉冲序列对系统进行了验证测试,脉冲检测的时间间隔误差为1 ns,峰值幅度误差为2个量化单位,脉冲对的分辨时间为10 ns。算法理论和实验结果表明,系统可以获得在有限长时间仓轴上的随机脉冲序列的ns级时间数字转换,同时可以获得脉冲的峰值。  相似文献   

6.
唐慧强  蒋钱  印晶 《应用声学》2014,22(11):3831-38323836
脉冲式激光测距仪通过测量激光脉冲的往返飞行时间来求得目标与测距系统之间的距离,而激光飞行时间的测量精度是影响测距精度的最关键因素;文章研究了激光回波信号处理电路,采用TDC_GP21(时间数字转换芯片)设计了时间间隔测量模块,详细介绍了TDC_GP21的测时原理与工作流程,设计的测距仪采用TMS320F2812作为主控芯片以提高系统的数据处理速度;实验结果表明,该激光测距仪结构简单,操作方便,测量范围为75 m~5 km,测量精度为±1 m,成本低,能够满足航空航天领域中对于空间目标的测距需求。  相似文献   

7.
为了准确了解电子束随时间变化的性能, 在神龙一号直线感应加速器上进行电子束束参数测量时要求测量系统精确地同步于电子束的产生和输运. 其功率系统开关放电波形后沿幅度高达250kV, 下降时间约20ns, 并且从该下降沿到电子束打靶的时间有145ns, 抖动1—2ns, 非常稳定; 如果以陡峭的后沿作为测量时间基准, 则可以获得与其抖动相同量级的同步精度. 因此通过对其波形的下降沿进行微分来获取测量系统的触发信号, 选择合适的微分参数可以得到对应于下降沿 约ns级精度的测量时间基准, 通过采用光纤驱动电路完全消除了高压开关对低压测量系统的干扰, 保证测量系统正常工作. 该方法消除了传统触发方式因延时长、精度低、抖动大等对确定测量时间基准的不利影响, 满足了使用高速测量设备准确获取电子束不同时刻的束参数波形的精确触发要求.  相似文献   

8.
光学渡越辐射作为高能强流电子束束流参数测量的一种方式, 具有时间响应快、分辨率高等特点, 可以测量电子束的束剖面、发散角、能量等多个参数;通过电子束束参数的时间分辨测量则能够了解电子束产生、运输中的问题, 非常有利于加速器的研究与调试. 一种具有时间分辨能力的、利用光学渡越辐射进行高能强流电子束参数测量的系统被建立起来, 并应用到了18.5MeV, 2.5kA, 90ns的实际的电子束束参数的在线测量中, 具有以10ns的时间间隔和3ns的曝光时间来获得90ns内相应的时间分辨的束发射度的变化值的能力, 为加速器的研究提供了又一个强有力的测试手段. 该系统具有的时间分辨能力最高到达10ns, 一次可以拍摄到8幅图像, 最小的曝光时间为3ns, 图像分辨率为1376×1035, 幅面可以达到φ80mm以上.  相似文献   

9.
李保权  李帆  曹阳  桑鹏 《光子学报》2023,(7):142-149
为了准确测量X射线脉冲星导航中的光子到达时间,提出了一种X射线探测器光子到达时间精度的测试系统,该系统主要由脉冲X射线发生器、任意波形发生器、雪崩光电二极管探测器和时间标记光子计数器组成。系统测量脉冲X射线发生器的控制脉冲信号与雪崩光电二极管探测器测量的输出信号之间的时间延迟,研究时间延迟的分布情况,该分布的标准差可以反映被测探测器的光子到达时间测量精度。实验结果显示,雪崩光电二极管探测器输出信号相比控制信号的时间延迟约9.03 ns,标准差为2.23 ns,即雪崩光电二极管探测器的光子到达时间精度为2.23 ns,表明其能够实现对X射线单光子的快时间响应与高精度标记。  相似文献   

10.
X射线脉冲星导航系统导航精度的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为提高X射线脉冲星导航系统的导航精度,提出了一种基于低通滤波器的恒比定时方法,以提高X射线脉冲星导航系统中X射线脉冲到达时间的测量精度.通过设计测量方案,对原有的峰值定时方法和改进后的恒比定时系统的定时精度和死时间进行测量.测量结果表明,峰值定时系统的定时精度和死时间分别为18和4750 ns,恒比定时系统的定时精度和死时间分别为0.78和105 ns,与原有的峰值定时系统相比,采用恒比定时系统的定时精度和死时间均得到明显的提高.在X射线脉冲星导航系统中,通过利用这两种不同定时系统来测量X射线光子的到达时间以构造累积脉冲轮廓.实验结果表明,与峰值定时系统相比,采用改进的恒比定时系统获得的累积脉冲轮廓的信噪比得到明显改善,因此,采用恒比定时系统的导航精度可得到提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号