首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Surface science》1996,364(2):L580-L586
The adsorption and decomposition of formic acid on NiO(111)-p(2 × 2) films grown on Ni(111) single crystal surface were studied by temperature-programmed desorption (TPD) spectroscopy. Exposure of formic acid at 163 K resulted in both molecular adsorption and dissociation to formate. The adsorbed formate underwent further dissociation to H2, CO2 and CO. H2 and CO2 desorbed at the same temperatures of 340, 390 and 520 K, while CO desorbed at 415 and 520 K. The desorption features varied with the formic acid exposure. Two reaction channels were identified for the decomposition of formate under equilibrium with gas-phase formic acid with a pressure of 2.5 × 10−4Pa, one preferentially producing H2 and CO2 with an activation energy of 22 ± 2 kJ mol−1 and the other preferentially producing CO and H2O with an activation energy of 16 ± 2 kJ mol−1. The order of both reaction paths was 0.5 with respect to the pressure of formic acid.  相似文献   

2.
The decomposition of HCOOD was studied on Ni(100). Low temperature adsorption of HCOOD resulted in the desorption of D2O, CO2, CO, and H2. The D2O was evolved below room temperature. CO2 and H2 were evolved in coincident peaks at a temperature above that at which h2 desorbed following H2 adsorption and well above that for CO2 desorption from CO2 adsorption; CO desorbed primarily in a desorption limited step. The decomposition of formic acid on the clean surface was found to yield equal amounts of H2, CO, and CO2 within experimental error. The kinetics and mechanism of the decomposition of formic acid on Ni (110) and Ni(100) single crystal surfaces were compared. The reaction proceeded by the dehydration of formic acid to formic anhydride on both surfaces. The anhydride intermediate condensed into islands due to attractive dipole-dipole interactions. Within the islands the rate of the decomposition reaction to form CO2 was given by:
Rate = 6 × 1015 exp{?[25,500 + ω(ccsat)]/RT} × c
, where c is the local surface concentration, csat is the saturation coverage for the particular crystal plane, and ω is the interaction potential. The interaction potential was determined to be 2.7 kcal/mole on Ni(110) and 1.4 kcal/mole on Ni(100); the difference observed was due to structural differences of the surfaces relating to the alignment of the dipole moments within the islands. These attractive interactions resulted in an autocatalytic reaction on Ni(110), whereas the interaction was not strong enough on Ni(100) to sustain the autocatalytic behavior. Formic acid decomposition oxidized the Ni(100) surface resulting in the formation of a stable surface oxide. The buildup of the oxide resulted in a change in the selectivity reducing the amount of CO formed. This trend indicated that on the oxide surface the decomposition proceeded via a formate intermediate as on Ni(110) O.  相似文献   

3.
Electron energy loss spectroscopy has demonstrated the existence of both a monodentate and a symmetric bidentate bridging formate as stable intermediates in the decomposition of formic acid on the Ru(001) surface. The monodentate formate converts upon heating to the bidentate formate which decomposes via two pathways: CH bond cleavage to yield CO2 and adsorbed hydrogen; and CO bond cleavage to yield adsorbed hydrogen, oxygen and CO. Thermal desorption spectra demonstrate the evolution of H2,H2O, CO and CO2 as gaseous products of the decomposition reaction. The observation of this product distribution from Ru(100), Ni(100) and Ni(110) had prompted the proposal of a formic anhydride intermediate, the existence of which is rendered questionable by the spectroscopic results reported here.  相似文献   

4.
A study of the adsorption/desorption behavior of CO, H2O, CO2 and H2 on Ni(110)(4 × 5)-C and Ni(110)-graphite was made in order to assess the importance of desorption as a rate-limiting step for the decomposition of formic acid and to identify available reaction channels for the decomposition. The carbide surface adsorbed CO and H2O in amounts comparable to the clean surface, whereas this surface, unlike clean Ni(110), did not appreciably adsorb H2. The binding energy of CO on the carbide was coverage sensitive, decreasing from 21 to 12 kcalmol as the CO coverage approached 1.1 × 1015 molecules cm?2 at 200K. The initial sticking probability and maximum coverage of CO on the carbide surface were close to that observed for clean Ni(110). The amount of H2, CO, CO2 and H2O adsorbed on the graphitized surface was insignificant relative to the clean surface. The kinetics of adsorption/desorption of the states observed are discussed.  相似文献   

5.
The adsorption/desorption characteristics of CO, O2, and H2 on the Pt(100)-(5 × 20) surface were examined using flash desorption spectroscopy. Subsequent to adsorption at 300 K, CO desorbed from the (5×20) surface in three peaks with binding energies of 28, 31.6 and 33 kcal gmol?1. These states formed differently from those following adsorption on the Pt(100)-(1 × 1) surface, suggesting structural effects on adsorption. Oxygen could be readily adsorbed on the (5×20) surface at temperatures above 500 K and high O2 fluxes up to coverages of 23 of a monolayer with a net sticking probability to ssaturation of ? 10?3. Oxygen adsorption reconstructed the (5 × 20) surface, and several ordered LEED patterns were observed. Upon heating, oxygen desorbed from the surface in two peaks at 676 and 709 K; the lower temperature peak exhibited atrractive lateral interactions evidenced by autocatalytic desorption kinetics. Hydrogen was also found to reconstruct the (5 × 20) surface to the (1 × 1) structure, provided adsorption was performed at 200 K. For all three species, CO, O2, and H2, the surface returned to the (5 × 20) structure only after the adsorbates were completely desorbed from the surface.  相似文献   

6.
The interaction of methanol with clean and oxygen-covered Pt(111) surfaces has been examined with high resolution electron loss spectroscopy (EELS) and thermal desorption spectroscopy (TDS). On the clean Pt(111) surface, methanol dehydrogenated above 140 K to form adsorbed carbon monoxide and hydrogen. On a Pt(111)-p(2 × 2)O surface, methanol formed a methoxy species (CH3O) and adsorbed water. The methoxy species was unstable above 170 K and decomposed to form adsorbed CO and hydrogen. Above room temperature, hydrogen and carbon monoxide desorbed near 360 and 470 K, respectively. The instability of methanol and methoxy groups on the Pt surface is in agreement with the dehydrogenation reaction observed on W, Ru, Pd and Ni surfaces at low pressures. This is in contrast with the higher stability of methoxy groups on silver and copper surfaces, where decomposition to formaldehyde and hydrogen occurs. The hypothesis is proposed that metals with low heats of adsorption of CO and H2 (Ag, Cu) may selectively form formaldehyde via the methoxy intermediate, whereas other metals with high CO and H2 chemisorption heats rapidly dehydrogenate methoxy species below room temperature.  相似文献   

7.
C2H4在清洁和有Cs覆盖的Ru(0001)表面吸附的TDS研究   总被引:1,自引:0,他引:1       下载免费PDF全文
用热脱附谱(TDS)方法研究了乙烯(C2H4)在Ru(0001)表面上的吸附.在低温下(200K以下)乙烯可以在清洁及有Cs的Ru(0001)表面上以分子状态稳定吸附,在衬底温度升高至200K以上时,乙烯发生了脱氢分解反应,乙烯分解后的主要产物为乙炔(C2H2).在清洁的Ru(0001)表面,乙烯有两种吸附状态,脱附温度分别为275K和360K.而乙炔的脱附温度为350K.在Ru(0001)表面有Cs的存在时,乙烯分解 关键词: 乙烯 钌(0001)表面 铯钌(0001)表面乙烯 钌(0001)表面 铯钌(0001)表面  相似文献   

8.
The interaction of NO with CO and with H2 on Pt(100) was studied by temperature programmed desorption (TPD), isothermal desorption mass spectrometry, and low energy electron diffraction (LEED), TPD of NO and CO coadsorbed at 120 K yields almost complete reaction with both N2 and CO2 products desorbing as sharp, simultaneous peaks at ≈ 410 K. with full widths at half maximum as narrow as 3 K. Isothermal desorption mass spectrometry yields N2 and CO2 rates that exhibit a maximum with time. Both experiments indicate that the reaction mechanism is autocatalytic. Annealing NO-CO adlayers formed at 120 K to temperatures above 300 K causes the subsequent N2 and CO2 TPD peaks to broaden.'TPD of NO coadsorbed with H2 yields sharp N2 and H2O product peaks that closely resemble the N2 and CO2 peaks observed in the NO + CO reaction. LEED experiments during TPD and isothermal desorption showed that the (1 × 1) → hex substrate phase transformation sometimes accompanies desorption of N2 and CO2. The TPD and isothermal desorption results can be fit by two simple models: chemical autocatalysis, in which an intermediate chemical species participates in a “chain propagation” reaction, and structural autocatalysis, which involves the formation of a reactive intermediate structure involving Pt atom displacements.  相似文献   

9.
F. Solymosi  J. Kiss 《Surface science》1981,104(1):181-198
No detectable adsorbed species were observed after exposure of HNCO to a clean Cu(111) surface at 300 K. The presence of adsorbed oxygen, however, exerted a dramatic influence on the adsorptive properties of this surface and caused the dissociative adsorption of HNCO with concomitant release of water. The adsorption of HNCO at 300 K produced two new strong losses at 10.4 and 13.5 eV in electron energy loss spectra, which were not observed during the adsorption of either CO or atomic N. These loses can be attributed to surface NCO on Cu(111). The surface isocyanate was stable up to 400 K. The decomposition in the adsorbed phase began with the evolution of CO2. The desorption of nitrogen started at 700 K. Above 800 K, the formation of C2N2 was observed. The characteristics of the CO2 formation and the ratios of the products sensitively depended on the amount of preadsorbed oxygen. No HNCO was desorbed as such, and neither NCO nor (NCO)2 were detected during the desorption. From the comparison of adsorption and desorption behaviours of HNCO, N, CO and CO2 on copper surfaces it was concluded that NCO exists as such on a Cu(111) surface at 300 K. The interaction of HNCO with oxygen covered Cu(111) surface and the reactions of surface NCO with adsorbed oxygen are discussed in detail.  相似文献   

10.
We have studied desorption of 13CO and H2O and desorption and reaction of coadsorbed, 13CO and H2O on Au(310). From the clean surface, CO desorbs mainly in, two peaks centered near 140 and 200 K. A complete analysis of desorption spectra, yields average binding energies of 21 ± 2 and 37 ± 4 kJ/mol, respectively. Additional desorption states are observed near 95 K and 110 K. Post-adsorption of H2O displaces part of CO pre-adsorbed at step sites, but does not lead to CO oxidation or significant shifts in binding energies. However, in combination with electron irradiation, 13CO2 is formed during H2O desorption. Results suggest that electron-induced decomposition products of H2O are sheltered by hydration from direct reaction with CO.  相似文献   

11.
The nonpolar (1010), stepped (4041) and (5051), and the polar (0001) surfaces of ZnO were prepared. Stable unreconstructed nonpolar and stepped surfaces were obtained. LEED analyses showed that the step height and the step width of the stepped surfaces were similar to the theoretical values. The polar surface showed a 1 × 1 LEED pattern of six-fold symmetry after annealing at 500°C, and evidence of a more complicated pattern at 300–400°C. Temperature programmed desorption of CO resulted in the desorption of CO from the stepped and the polar surfaces. However, desorption of CO2 was observed from the stoichiometric nonpolar surface, and no desorption from the reduced nonpolar surface. CO2 was also observed by interacting CO with all surfaces at elevated temperatures. A total of four temperature programmed desorption peaks of CO2, α, β, γ, and δ were observed. The α and β peaks were observed on the nonpolar and the stepped surfaces, and the γ peak was observed on the polar surface. The α peak was assigned to adsorption on a surface ZnO pair, and the β peak was assigned to adsorption on an anion vacancy or a step. While adsorbed water enhanced the β, preadsorbed methanol reduced it. O2 adsorption was similar on the nonpolar and the stepped surfaces, but was weak on the polar surface.  相似文献   

12.
The adsorption and coadsorption of CO and H2 have been studied by means of thermal desorption (TD) and electron stimulated desorption (ESD) at temperatures ranging from 250 to 400 K. Three CO TD states, labelled as β2, β1, and β0 were detected after adsorption at 250 K. The population of β2 and β1 states which are the only ones observed upon adsorption at temperatures higher than 300 K was found to depend on adsorption temperature. The correlation between the binding states in the TD spectra and the ESD O+ and CO+ ions observed was discussed. Hydrogen is dissociatively adsorbed on Pd(111) and no ESD H+ signal was recorded following H2 adsorption on a clean Pd surface. The presence of CO was found to cause an appearance of a H+ ESD signal, a decrease of hydrogen surface population and an arisement of a broad H2 TD peak at about 450 K. An apparent influence of hydrogen on CO adsorption was detected at high hydrogen precoverages alone, leading to a decrease in the CO sticking coefficient and the relative population of CO β2 state. The coadsorption results were interpreted assuming mutual interaction between CO and H at low and medium CO coverages, the “cooperative” species being responsible for the H+ ESD signal. Besides, the presence of CO was proved to favour hydrogen penetration into the bulk even at high CO coverage when H atoms were completely displaced from the surface.  相似文献   

13.
We have used flash desorption mass spectroscopy to study the adsorption and desorption of H2 and CO from clean titanium at room temperature. CO flash desorption occurs predominantly from a low temperature state whose binding energy is 20.3 kcal/mole. H2 flash desorption is complex. Only one peak is observed; it is broader than flash desorption spectra normally corresponding to first or second order kinetics. The shift in the peak temperature to lower values with increasing coverage has been analysed using the isothermal desorption rate technique. The apparent order of H2 desorption is 1.5 and is independent of temperature from 888 to 1077 K. The activation energy is 21 kcal/mole. These results will be discussed in terms of absorption of H2 into titanium and thermal decomposition of a titanium hydride compound.  相似文献   

14.
《Surface science》1997,381(1):L581-L588
We report data for chemisorption and reaction of deuterium and isotopically labeled ammonia on single-crystalline GaN films grown on sapphire substrates. Temperature programmed desorption (TPD) and Auger electron spectroscopy (AES) studies, following exposure of the clean GaN film at room temperature to the probe reactant species, were conducted under UHV conditions. Deuterium desorption took place over a wide temperature range, 525–;800 K, with molecular deuterium as the only product. At low exposures, two distinct deuterium desorption peaks at ∼ 660 and 770 K were observed. The deuterium desorption peak at 660 K shifted to lower temperatures with increasing D adatom coverages. TPD experiments after ammonia adsorption on GaN revealed small amounts of hydrogen desorbed at ∼ 600 K and over a range 660–;770 K, suggesting partial decomposition of ammonia. Molecular ammonia desorption was observed at ∼ 560 and 600 K, with the low temperature desorption state growing with increasing ammonia exposures. Further studies on deuterium-precovered GaN films indicated that ammonia production resulted from recombination of NHx species and hydrogen adatoms on the surface.  相似文献   

15.
The adsorption of H2O on Al(111) has been studied by ESDIAD (electron stimulated desorption ion angular distributions), LEED (low energy electron diffraction), AES (Auger electron spectroscopy) and thermal desorption in the temperature range 80–700 K. At 80 K, H2O is adsorbed predominantly in molecular form, and the ESDIAD patterns indicate that bonding occurs through the O atom, with the molecular axis tilted away from the surface normal. Some of the H2O adsorbed at 80 K on clean Al(111) can be desorbed in molecular form, but a considerable fraction dissociates upon heating into OHads and hydrogen, which leaves the surface as H2. Following adsorption of H2O onto oxygen-precovered Al(111), additional OHads is formed upon heating (perhaps via a hydrogen abstraction reaction), and H2 desorbs at temperatures considerably higher than that seen for H2O on clean Al(111). The general behavior of H2O adsorption on clean and oxygen-precovered Al(111) (θO ? monolayer) is rather similar at low temperature, but much higher reactivity for dissociative adsorption of H2O to form OH adsis noted on the oxygen-dosed surface around room temperature.  相似文献   

16.
The adsorption of oxygen and the interaction of carbon monoxide with oxygen on Ru(101) have been studied by LEED, Auger spectroscopy and thermal desorption. Oxygen chemisorbs at 300 K via a precursor state and with an initial sticking probability of ~0.004, the enthalpy of adsorption being ~300 kJ mol?1. As coverage increases a well ordered ¦11,30¦ phase is formed which at higher coverages undergoes compression along [010] to form a ¦21,50¦ structure, and the surface eventually saturates at 0 ~ 89. Incorporation of oxygen into the subsurface region of the crystal leads to drastic changes in the surface chemistry of CO. A new high; temperature peak (γ CO, Ed ~ 800 kJ mol?1) appears in the desorption spectra, in addition to the α and β CO peaks which are characteristic of the clean surface. Coadsorption experiments using 18O2 indicate that γ CO is not dissociatively adsorbed, and this species is also shown to be in competition with β CO for a common adsorption site. The unusual temperature dependence of the LEED intensities of the ¦11,30¦-O phase and the nature of α, β, and β CO are discussed. Oxygen does not displace adsorbed CO at 300 K and the converse is also true, neither do any Eley-Rideal or Langmuir-Hinshelwood reactions occur under these conditions. Such processes do occur at higher temperatures, and in particular the reaction CO(g) + O(a) → CO2(g) appears to occur with much greater collisional efficiency than on Ru(001). The oxidation of CO has been examined under steady state conditions, and the reaction was found to proceed with an apparent activation energy of 39 kJ mol?. This result rules out the commonly accepted explanation that CO desorption is rate determining, and is compared with the findings of other authors.  相似文献   

17.
The reactive scattering of formic acid from Ni(110) was studied over the temperature range of 175–920 K with MBRS in the millisecond time region by employing a modulation frequency of 36.8 Hz. The steady-state carbon and oxygen composition of the surface varied over the range of temperatures studied. For beam fluxes of 1013 molecules/cm2 sec the onset of decomposition on the steady-state surface occurred at 300 K. By 400 K decomposition was essentially complete, and the products CO2, CO, H2 and H2O were detected. All reaction events were prceded by a common step, and the products were then produced by a series/parallel mechanism. The rate constants measured for H2 and H2O formation indicated stringent limitations on the efficiency of second-order collisions on the surface for producing gaseous products. This study illustrates the use of MBRS for surface reaction mechanistic studies in the millisecond time scale.  相似文献   

18.
The coadsorption of CO and hydrogen on an Fe(100) surface was studied by temperature programmed desorption and X-ray photoelectron spectroscopy. It was found that CO adsorption blocked the subsequent dissociative adsorption of H2, although it did not seem to affect the hydrogen binding energy. Preadsorption of hydrogen was observed to reduce the binding energy of CO subsequently adsorbed and to inhibit the dissociation of CO. A new surface species was identified in a coadsorbed layer of CO and hydrogen. This species was evidenced by the formation of a desorption peak for H2 at 475 K when CO was adsorbed subsequent to H2 adsorption.  相似文献   

19.
X-ray photoelectron spectroscopy has been used to study the adsorption and catalytic decomposition of formaldehyde on a W(100) single crystal. Comparison with the O(1s) spectra of CO(ads), CO2(ads) and O(ads) has been carried out in an attempt to understand the surface complexes formed from H2CO. It has been shown that H2CO dissociates at 100 K upon adsorption up to ca. 1/2 monolayer. Above this coverage, condensation of undissociated H2CO occurs. A surface complex leading to the liberation of CO2 from the formaldehyde layer has been detected by XPS. However, no complex uniquely related to an intermediate which yields a small quantity of CH4 has been detected by XPS.  相似文献   

20.
The thermal desorption of hydrogen from Pt and PtAu films has been measured in an ultra-high vacuum system by means of a mass spectrometer. On the average, hydrogen is more loosely bound on the alloys than on pure Pt. About 50% of the adsorbate is desorbed by pumping at 78 K from the alloys while only a very small percentage is desorbed from Pt at this temperature. After maximum coverage of Pt films by hydrogen adsorption three desorption peaks have been observed: γ (120 K), β1 (200 K) and β2 (330 K). The same peaks have been found for the alloys as well but the relative population of the various adsorption types was different. The relative peak heights vary with the alloy composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号