首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
有机半导体多层薄膜器件的性质很大程度上由有机-有机界面的传输性质所决定,但是现有的关于有机-有机界面的分析模型很难适用于实际器件的模拟.以Miller-Abrahams跳跃传导理论为基础,充分考虑有机-有机界面和金属-有机界面性质的不同,建立了一个新的描述有机-有机异质界面电荷传输的解析模型.结果表明有机异质界面的载流子传输不仅取决于界面的肖特基势垒,而且还取决于界面附近两边的电场强度和载流子浓度.此模型可用于有机半导体多层薄膜器件的电流密度、电场分布和载流子浓度分布的自洽计算. 关键词: 有机半导体 界面 载流子传输  相似文献   

2.
混合卤素钙钛矿由于具有优异的光物理性质成为了光电子领域应用中的明星材料.因此,钙钛矿材料中光生载流子动力学的探究和调控对于进一步提升材料的性能具有重要意义.本文通过表面离子交换法制备了具有溴梯度的MAPbI_(3-x)Br_x钙钛矿薄膜,并对其内部载流子传输及界面电荷转移动力学过程进行了系统的研究.在MAPbI_(3-x)Br_x薄膜中,溴离子梯度分布所导致的能带梯度能有效促进光生空穴在薄膜内部的传输过程及在界面的提取过程.同时,由于卤素离子交换的后处理方法对薄膜表面起到了修饰作用,薄膜界面处的本征电子转移速率也得到了显著的提升.研究表明,在通过表面后处理方法制备的混合卤素钙钛矿薄膜中,有可能同时实现界面电子和空穴转移速率的提升,这对于进一步提升钙钛矿太阳能电池的能量转换效率具有一定的启发作用.  相似文献   

3.
混合卤素钙钛矿由于具有优异的光物理性质成为了光电子领域应用中的明星材料. 因此,钙钛矿材料中光生载流子动力学的探究和调控对于进一步提升材料的性能具有重要意义. 本文通过表面离子交换法制备了具有溴梯度的MAPbI3-xBrx钙钛矿薄膜,并对其内部载流子传输及界面电荷转移动力学过程进行了系统的研究. 在MAPbI3-xBrx薄膜中,溴离子梯度分布所导致的能带梯度能有效促进光生空穴在薄膜内部的传输过程及在界面的提取过程. 同时,由于卤素离子交换的后处理方法对薄膜表面起到了修饰作用,薄膜界面处的本征电子转移速率也得到了显著的提升. 研究表明,在通过表面后处理方法制备的混合卤素钙钛矿薄膜中,有可能同时实现界面电子和空穴转移速率的提升,这对于进一步提升钙钛矿太阳能电池的能量转换效率具有一定的启发作用.  相似文献   

4.
魏争  王琴琴  郭玉拓  李佳蔚  时东霞  张广宇 《物理学报》2018,67(12):128103-128103
作为一种新型的二维半导体材料,单层二硫化钼薄膜由于其优异的特性,在电子学与光电子学等众多领域具有潜在的应用价值.本文综述了我们课题组在过去几年中针对单层二硫化钼薄膜的研究所取得的进展,具体包括:在二硫化钼薄膜的制备方面,通过氧辅助化学气相沉积方法,实现了大尺寸单层二硫化钼单晶的可控生长和晶圆级单层二硫化钼薄膜的高定向外延生长;在二硫化钼薄膜的加工方面,发展了单层二硫化钼薄膜的无损转移、洁净图案化加工、可控结构相变与局域相调控的方法,为场效应晶体管等电子学器件的制备与性能优化提供了基础;在二硫化钼异质结方面,研究了二硫化钼薄膜与其他二维材料形成的异质结的电学以及光电性质,为二维材料异质结的构筑和器件特性研究提供了实验参考;在二硫化钼薄膜功能化器件与应用方面,构筑了全二维材料、亚5 nm超短沟道场效应晶体管器件,验证了单层二硫化钼对短沟道效应的有效抑制及其在5 nm工艺节点器件中的应用优势;此外,利用制备的高质量单层二硫化钼和发展的器件洁净加工技术,实现了高性能柔性薄膜晶体管的集成,获得了超高灵敏度与稳定性的非接触型湿度传感器.我们在二硫化钼薄膜的制备、加工以及器件特性研究方面所取得的进展对于二硫化钼及其他二维过渡金属硫属化合物的基础和应用研究均具有指导意义.  相似文献   

5.
有机晶体材料中分子排列规则,形成长程有序、缺陷态密度低的结构,相对于非晶态材料具有很好的热稳定性、化学稳定性以及高的载流子迁移率,使得有机晶体材料在发展高性能OLED方面具有巨大的潜力。本文总结了近期利用弱取向外延生长技术发展的多晶薄膜OLED(C-OLED)系列工作。从最初的单结晶层绿光器件发展到多层掺杂深蓝光器件,C-OLED证实晶态有机半导体路线可以实现有效发光,器件表现出低启亮电压、低工作电压、高光输出、高功率效率和低焦耳热损耗等优越特性。  相似文献   

6.
宋登元 《物理》1992,21(12):713-717
有机半导体材料的研究与器件应用是近年来微电子学和光电子学发展的新领域。有机半导体器件低的成本和相对简单的制备工艺受到了发达国家的高度重视。本文简单分析了有机半导体材料的特点,介绍了有机太阳电池、肖特基二极管、异质结光电探测器和场效应晶体管的发展状况,并指出了今后器件的改进方向。  相似文献   

7.
用光伏效应研究有机薄膜电致发光器件中的接触性质   总被引:1,自引:0,他引:1  
刘祖刚  张志林 《发光学报》1994,15(3):226-232
首次发现了有机薄膜电致发光器件的光生伏特效应,通过对器件的光电流响应谱的详细研究,分析了不同结构的有机发光器件中的有机半导体之间,以及有机半导体与电极材料之间的半导体接触性质,发现有机发光材料Alq3,有机空穴传输材料daimine与金属铝电极之间形成阻挡接触,是电致发光器件发光和产生光电效应的根本原因,而双层器件中有机层Alq3与diamine之间的结是双层器件产生高发光效率的原因,正是这种结在双层器件中起了局限载流子和激子的作用,使发光亮度大为提高,结合分区掺杂实验结果,给出了较完善的能带模型。  相似文献   

8.
<正>现代微电子器件的发展,很大程度上依赖于工艺与材料的突破,其中特别是对磁性薄膜材料的基础研究,已经使自旋电子学领域有了革命性的进展。为了获得具有广泛应用前景且更高性能的电子学器件,对于新型的磁性薄膜材料的研究是非常重要的课题。传统的磁性薄膜材料[1,2]可通过分子束外延法制备,它们的磁性往往受限于特定的生长衬底,均匀的大面积薄膜的生长也极具挑战性。而随着石墨烯的发现,范德瓦尔斯晶体为我们提供了新  相似文献   

9.
用光伏效应研究有机薄膜电致发光器件中的接触性质   总被引:2,自引:0,他引:2  
首次发现了有机薄膜电致发光器件的光生伏特效应,通过对器件的光电流响应谱的详细研究,分析了不同结构的有机发光器件中的有机半导体之间,以及有机半导体与电极材料之间的半导体接触性质,发现有机发光材料Alq3,有机空穴传输材料daimine与金属铝电极之间形成阻挡接触,是电致发光器件发光和产生光电效应的根本原因;而双层器件中有机层Alq3与diamine之间的结是双层器件产生高发光效率的原因,正是这种结在双层器件中起了局限载流子和激子的作用,使发光亮度大为提高,结合分区掺杂实验结果,给出了较完善的能带模型.  相似文献   

10.
李博  邵剑峰 《物理学报》2012,61(7):77301-077301
制备了结构为氧化铟锡(ITO)/有机半导体/金属的有机薄膜光伏器件,电流--电压曲线显示其具有整流特性但有机半导体和电极间肖特基接触的内建电场方向很难判定.为了研究有机半导体和电极的肖特基接触特性,分别制备了结构为ITO/有机绝缘层/有机半导体/金属和ITO/有机半导体/有机绝缘层/金属的器件,通过调制激光照射下器件的瞬态光电流方向可容易判断有机半导体和电极间肖特基接触的内建电场方向,外加偏压下瞬态光电流的强度变化进一步证实了判断的正确性.  相似文献   

11.
Recent progress in organic spintronics is given an informative overview, covering spin injection, detection, and trans-port in organic spin valve devices, and the magnetic field effect in organic semiconductors (OSCs). In particular, we focus on our own recent work in spin injection and the organic magnetic field effect (OMFE).  相似文献   

12.
The development of electronics devices based on organic materials presents one of the most exciting challenges in XXI science. Already products based on organic thin films are in the market place, however the initial work in development of molecular-scale electronics has been done. The purpose of this review is to provide a general information about electronics devices incorporating organic materials and organic molecules acting as simple electronics devices.  相似文献   

13.
2D layered materials and heterojunctions with excellent ductility and controllable atomic‐layer thicknesses have shown promise for use in advanced electronics and optical functional devices. Tailoring of nanoscale configurations and physical properties is essential and required for bespoke fabrication of advanced devices based on 2D materials. Due to the high strain tolerance of 2D layered materials, strain engineering is an effective method to tune their behaviors of electrons and phonons. A wide variety of 2D materials are available with tunable bandgaps from interface coupling effects, making 2D layered heterojunctions a versatile platform for understanding fundamental physical issues. Most physical properties and functional applications can be tailored by applying strain to 2D layered materials and heterostructures to realize a scheduled target in carrier concentration, mobility, and barrier height. Herein, the latest research on the roles of strain in modulating the physical properties of 2D layered materials and heterojunctions is introduced, focusing on the physical properties behind strain modulation in 2D materials. Understanding and manipulating strain in 2D layered materials and heterojunctions is important and beneficial for creating tunable electronic and optoelectronic constructions with advanced components, including functional flexible and wearable devices.  相似文献   

14.
Dongmei Luo 《Molecular physics》2013,111(14):1825-1832
A series of novel D–π–A star-shaped molecules with triphenylamine (TPA) fragments as cores, diketopyrrolopyrrole (DPP) fragments as arms, and different conjugate π-bridges those connect TPA and DPP fragments have been designed for small molecules based organic solar cells (OSCs) applications. The optical, electronic, and charge transporting properties have been systematically investigated by means of density functional theory (DFT) and time-dependent DFT (TD-DFT) methods. The parameters such as energetic driving force ΔEL-L, adiabatic ionisation potentials (AIP), and adiabatic electron affinities (AEA) were also calculated at the same level to preliminarily evaluate the performance of the OSCs. The results of frontier molecular orbitals (FMOs) show that the designed molecules provide the best match matched energy levels with typical acceptors PCBM, bisPCBM, and PC70BM except for molecule containing benzo[c][1,2,5]thiadiazole unit because of its low energetic driving force ΔEL-L. It turned out that the FMO energy levels, the band gaps, AIP, AEA, and absorption spectrum can be tuned effectively by the introduction of different groups. Additionally, our results suggest that the designed molecules can act as promising candidates for donor materials and ambipolar charge transport materials for OSCs.  相似文献   

15.
Nonlinear heat transfer can be exploited to reveal novel transport phenomena and thus enhance people’s ability to manipulate heat flux at will. However, there has not been a mature discipline called nonlinear thermotics like its counterpart in optics or acoustics to make a systematic summary of relevant researches. In the current review, we focus on recent progress in an important part of nonlinear heat transfer, i.e., tailoring nonlinear thermal devices and metamaterials under the Fourier law, especially with temperature-dependent thermal conductivities. We will present the basic designing techniques including solving the equation directly and the transformation theory. Tuning nonlinearity coming from multi-physical effects, and how to calculate effective properties of nonlinear conductive composites using the effective medium theory are also included. Based on these theories, researchers have successfully designed various functional materials and devices such as the thermal diodes, thermal transistors, thermal memory elements, energy-free thermostats, and intelligent thermal materials, and some of them have also been realized in experiments. Further, these phenomenological works can provide a feasible route for the development of nonlinear thermotics.  相似文献   

16.
Kong  Qingquan  An  Xuguang  Huang  Lin  Wang  Xiaolian  Feng  Wei  Qiu  Siyao  Wang  Qingyuan  Sun  Chenghua 《Frontiers of Physics》2021,16(5):1-36

Nonlinear heat transfer can be exploited to reveal novel transport phenomena and thus enhance people’s ability to manipulate heat flux at will. However, there has not been a mature discipline called nonlinear thermotics like its counterpart in optics or acoustics to make a systematic summary of relevant researches. In the current review, we focus on recent progress in an important part of nonlinear heat transfer, i.e., tailoring nonlinear thermal devices and metamaterials under the Fourier law, especially with temperature-dependent thermal conductivities. We will present the basic designing techniques including solving the equation directly and the transformation theory. Tuning nonlinearity coming from multi-physical effects, and how to calculate effective properties of nonlinear conductive composites using the effective medium theory are also included. Based on these theories, researchers have successfully designed various functional materials and devices such as the thermal diodes, thermal transistors, thermal memory elements, energy-free thermostats, and intelligent thermal materials, and some of them have also been realized in experiments. Further, these phenomenological works can provide a feasible route for the development of nonlinear thermotics.

  相似文献   

17.
近年来,二维层状材料由于其丰富的材料体系和独特的物理化学性质而受到人们的广泛关注.后摩尔时代要求器件高度集成化,大面积、高质量的二维材料可以保证器件中结构和电子性能的连续性.要实现二维材料工业级别的规模化生产,样品的可控制备是其前提.化学气相沉积是满足上述要求的一种强有力的方法,已广泛应用于二维材料及其复合结构的生长制备.但是要实现多种二维材料大尺寸以至晶圆级的批量制备仍然是很困难的,因此,需要进一步建立对各种二维材料生长控制的系统认识.本文基于材料生长机理分析了化学气相沉积反应中的物质运输、成核、产物生长过程对二维材料尺寸的影响,以及如何通过调控这些过程实现二维材料大面积薄膜的可控制备.通过对目前研究成果的总结分析,讨论了如何进一步实现二维材料的高质量大面积制备.  相似文献   

18.
Heat dissipation is one of the most serious problems in modern integrated electronics with the continuously decreasing devices size. Large portion of the consumed power is inevitably dissipated in the form of waste heat which not only restricts the device energy-efficiency performance itself, but also leads to severe environment problems and energy crisis. Thermoelectric Seebeck effect is a green energy-recycling method, while thermoelectric Peltier effect can be employed for heat management by actively cooling overheated devices, where passive cooling by heat conduction is not sufficiently enough. However, the technological applications of thermoelectricity are limited so far by their very low conversion efficiencies and lack of deep understanding of thermoelectricity in microscopic levels. Probing and managing the thermoelectricity is therefore fundamentally important particularly in nanoscale. In this short review, we will first briefly introduce the microscopic techniques for studying nanoscale thermoelectricity, focusing mainly on scanning thermal microscopy (SThM). SThM is a powerful tool for mapping the lattice heat with nanometer spatial resolution and hence detecting the nanoscale thermal transport and dissipation processes. Then we will review recent experiments utilizing these techniques to investigate thermoelectricity in various nanomaterial systems including both (two-material) heterojunctions and (single-material) homojunctions with tailored Seebeck coefficients, and also spin Seebeck and Peltier effects in magnetic materials. Next, we will provide a perspective on the promising applications of our recently developed Scanning Noise Microscope (SNoiM) for directly probing the non-equilibrium transporting hot charges (instead of lattice heat) in thermoelectric devices. SNoiM together with SThM are expected to be able to provide more complete and comprehensive understanding to the microscopic mechanisms in thermoelectrics. Finally, we make a conclusion and outlook on the future development of microscopic studies in thermoelectrics.  相似文献   

19.
Magnetic field can influence photoluminescence, electroluminescence, photocurrent, injection current, and dielectric constant in organic materials, organic–inorganic hybrids, and nanoparticles at room temperature by re-distributing spin populations, generating emerging phenomena including magneto-photoluminescence, magneto-electroluminescence, magneto-photocurrent, magneto-electrical current, and magneto-dielectrics. These so-called intrinsic magnetic field effects (MFEs) can be observed in linear and non-linear regimes under one-photon and two-photon excitations in both low- and high-orbital materials. On the other hand, spin injection can be realized to influence spin-dependent excited states and electrical conduction via organic/ferromagnetic hybrid interface, leading to extrinsic MFEs. In last decades, MFEs have been serving as a unique experimental tool to reveal spin-dependent processes in excited states, electrical transport, and polarization in light-emitting diodes, solar cells, memories, field-effect transistors, and lasing devices. Very recently, they provide critical understanding on the operating mechanisms in advanced organic optoelectronic materials such as thermally activated delayed fluorescence light-emitting materials, non-fullerene photovoltaic bulk-heterojunctions, and organic–inorganic hybrid perovskites. While MFEs were initially realized by operating spin states in organic semiconducting materials with delocalized π electrons under negligible orbital momentum, recent studies indicate that MFEs can also be achieved under strong orbital momentum and Rashba effect in light emission, photovoltaics, and dielectric polarization. The transition of MFEs from the spin regime to the orbital regime creates new opportunities to versatilely control light-emitting, photovoltaic, lasing, and dielectric properties by using long-range Coulomb and short-range spin–spin interactions between orbitals. This article reviews recent progress on MFEs with the focus on elucidating fundamental mechanisms to control optical, electrical, optoelectronic, and polarization behaviors via spin-dependent excited states, electrical transport, and dielectric polarization. In this article both representative experimental results and mainstream theoretical models are presented to understand MFEs in the spin and orbital regimes for organic materials, nanoparticles, and organic–inorganic hybrids under linear and non-linear excitation regimes with emphasis on underlying spin-dependent processes.  相似文献   

20.
刘云圻  刘升高 《物理》1996,25(7):395-403
有机光电磁功能材料是新一代材料。文章简要介绍了有机半导体、光导体、光致变色与电致变色材料、有机非线性光学材料、有机导体、超导体、导电高分子,以及有机铁磁材料和有机分子电子器件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号