首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 687 毫秒
1.
地上生物量(AGB)是作物长势评价及产量预测的重要指标,因此快速准确地估算AGB至关重要。由于传统植被指数(VIs)估算多生育期的AGB存在饱和现象,因此,利用VIs结合基于离散小波转换(DWT)的影像小波分解(IWD)技术提取的高频信息和连续小波转换(CWT)技术提取的小波系数,探究VIs,VIs+IWD和VIs+CWT对于AGB的估算能力。首先,基于无人机平台分别获取马铃薯现蕾期、块茎形成期、块茎增长期、淀粉积累期的数码影像和成像高光谱影像以及地面实测的AGB数据。其次,利用数码影像通过IWD技术提取3种高频信息和利用高光谱反射率数据通过CWT技术提取小波系数以及构建6种高光谱植被指数。然后,将植被指数、高频信息和小波系数分别与AGB进行相关性分析,并挑选出不同尺度下相关系数绝对值较高的前10波段。最后,以VIs,VIs+IWD和VIs+CWT这3种变量分别使用偏最小二乘回归(PLSR)方法构建AGB估算模型,并对比不同模型估算AGB的效果。结果表明: (1)每个生育期选取的6种植被指数、3种高频信息和10种小波系数与AGB的相关性均达到0.01显著水平,整个生育期相关性均呈现先升高后降低的趋势,其中以小波系数得到的相关性最高、高频信息次之,植被指数最低。(2)对比分析每个生育期的3种估算模型,以VIs+CWT为输入变量的估算效果最好,VIs+IWD的估算效果次之,而VIs的估算效果最差,说明基于小波分析构建的模型适用性较广、稳定性较强。(3)每个生育期分别以3种变量利用PLSR方法构建的AGB估算模型均在块茎增长期达到最高精度(VIs:建模R2=0.70,RMSE=98.88 kg·hm-12,NRMSE=11.63%;VIs+IWD:建模R2=0.78,RMSE=86.45 kg·hm-12,NRMSE=10.17%;VIs+CWT:建模R2=0.85,RMSE=74.25 kg·hm-12,NRMSE=9.27%)。通过VIs分别结合IWD和CWT技术利用PLSR建模方法,可以提高AGB估算精度,为农业指导管理提供可靠参考。  相似文献   

2.
地上生物量(AGB)是评估作物生长发育和指导田间农业生产管理的重要指标。因此,高效精准地获取作物AGB信息,可以及时准确地估算产量,对于保障粮食供应和贸易提供有力依据。传统获取AGB的方法是采用破坏性取样法,这使得大面积、长期的测量变为困难。然而,随着精准农业的快速发展,无人机遥感技术被认为是估算大面积作物AGB最有效的技术方式。通过无人机平台搭载多光谱传感器获取马铃薯块茎形成期、块茎增长期和淀粉积累期的多光谱影像,地面实测株高和AGB以及地面控制点(GCP)的空间位置信息。首先,基于SFM(structure from motion,SFM)技术利用无人机影像数据结合GCP的三维坐标生成试验田的DSM(digital surface model,DSM),通过DSM提取出马铃薯各生育期的株高(Hdsm);然后,选取原始4个单波段植被指数、9个多波段组合的植被指数、红边波段的高频信息(HFI)和提取的Hdsm分别与AGB作相关性分析;最后基于单波段植被指数(x1)、多波段组合的植被指数(x2)、植被指数结合Hdsm(x3)、植被指数结合HFI(x4)以及植被指数融合HFI和Hdsm(x5)为模型输入参数,采用偏最小二乘回归(PLSR)和岭回归(RR)估算各生育期的AGB。结果表明:(1)提取的Hdsm和实测株高拟合的R2为0.87,NRMSE为14.34%;(2)各模型参数都与AGB达到极显著水平,相关性均从块茎形成期到淀粉积累期先升高后降低;(3)各生育期以5种变量使用同种方法估算马铃薯AGB的效果,均从块茎形成期到淀粉积累期先好后变差,其估算精度由高到低依次为x5>x4>x3>x2>x1;(4)各生育期使用PLSR以不同变量估算AGB的效果要优于RR方法,其中在块茎增长期基于x5变量估算马铃薯AGB效果最佳,R2为0.73,NRMSE为15.22%。因此,选取多光谱植被指数结合红边波段的高频信息和Hdsm并使用PLSR方法可以明显提高AGB的估算精度,这为大面积马铃薯作物AGB的监测提供了新的技术支撑。  相似文献   

3.
地上生物量(above-ground biomass, AGB)是评价作物长势及其产量估测的重要指标,对指导农业管理具有重要的作用。因此,快速准确地获取生物量信息,对于监测马铃薯生长状况,提高产量具有重要的意义。于马铃薯现蕾期、块茎形成期、块茎增长期、淀粉积累期、成熟期获取成像高光谱影像、实测株高(heigh, H)、地上生物量和地面控制点(ground control point, GCP)的三维空间坐标。首先基于无人机高光谱灰度影像结合GCP生成试验田的DSM(digital surface model, DSM),利用DSM提取马铃薯的株高(Hdsm);然后利用无人机高光谱影像计算一阶微分光谱、植被指数和绿边参数,进而分析高光谱特征参数(hyperspectral characteristic parameters, HCPs)和绿边参数(green edge parameters, GEPs)与马铃薯AGB的相关性,每个生育期筛选出相关性较高的前7个高光谱特征参数和最优绿边参数(optimal green edge parameters, OGEPs);最后基于HCPs,HCPs加入OGEPs,HCPs加入OGEPs和Hdsm的组合利用偏最小二乘回归(partial least square regression, PLSR)和随机森林(random forest, RF)估算不同生育期的AGB。结果表明:(1)提取的Hdsm与实测株高H高度拟合(R2=0.84,RMSE=6.85 cm,NRMSE=15.67%);(2)每个生育期得到的最优绿边参数不完全相同,现蕾期、块茎增长期和淀粉积累期OGEPs为Rsum,块茎形成期和成熟期OGEPs分别为Drmin和SDr;(3)与仅使用HCPs估算AGB相比,使用HCPs加入OGEPs,HCPs加入OGEPs和Hdsm在马铃薯不同生育期可以提高AGB估算精度,且以后者为自变量提高精度的幅度更大;(4)每个生育期利用PLSR和RF估算AGB的建模和验证R2从现蕾期到块茎增长期呈上升趋势,随后开始降低,整体上R2呈先上升后下降的趋势,通过PLSR方法构建的估算AGB模型效果优于RF方法,其中块茎增长期表现效果最好。因此,高光谱特征参数中结合最优绿边参数和株高,并使用PLSR方法可以改善马铃薯AGB的估算效果。  相似文献   

4.
水稻是我国的主要粮食作物,利用高光谱遥感技术在水稻未成熟之前对水稻产量进行监测,一方面可以及时调整栽培管理方式,指导合理追肥,另一方面,可以准确掌握水稻的产量信息,帮助政府提前做出决策。以2019年—2020年广州市白云区钟落潭试验基地氮肥梯度实验为基础,分别获取水稻分化期和抽穗期冠层高光谱数据、作物群体长势参数(生物量、叶面积指数)及作物养分吸收量,利用贝叶斯岭回归(BRR)、支持向量回归(SVR)、偏最小二乘回归(PLSR)三种方法建立各生育期的产量监测模型并进行精度对比,确定水稻产量的最优估算时期和最佳估测模型。结果表明,三种方法中,BRR和SVR方法更适合产量监测,在不同时期及不同的参数组合下均有较好的表现(R2>0.82,NRMSE<8.22%);基于2019年与2020年数据,采用全波段光谱信息进行产量监测时,分化期最佳监测模型为BRR模型,R2为0.90,抽穗期最优监测模型为SVR模型,R2为0.87;采用全波段光谱协同作物群体长势参数进行产量监测时,两时期最佳监测模型均为BRR模型,R2分别达到0.90和0.92;相较于BRR模型和SVR模型,PLSR模型在不同时期和不同参数组合下,最高R2仅为0.75;基于2020年数据,以三种不同的参数组合作为输入时,两时期估算结果均为BRR模型最优,且分化期建模精度高于抽穗期(R2至少增加0.02,NRMSE至少降低0.61%);当输入参数组合为全波段光谱协同作物群体长势参数、作物养分吸收量时,BRR模型对产量的估算精度达到最高,R2为0.94。分析认为产量的最优监测时期是分化期,最优监测模型为BRR模型。研究结果可为水稻产量的早期遥感监测提供参考。  相似文献   

5.
分蘖数是表征冬小麦生长的关键性参数,对于冬小麦苗情监测、产量预估具有重要意义。针对目前冬小麦分蘖数估算方法存在的数据获取繁复和估算模型体量大的问题,提出一种基于可见光图像和轻量级卷积神经网络的冬小麦分蘖数估算方法,以期实现冬小麦分蘖数无损快速估算,并且可嵌入移动终端设备。可见光图像具有获取便捷,处理简单的特点,利用数码相机连续采集2017年—2018年和2018年—2019年两个生长季的冬小麦冠层可见光图像。利用该数据图像,分别构建基于轻量级卷积神经网络MobileNetV2,SqueezeNett,ShuffleNet的冬小麦分蘖数估算模型进行比较试验,并与基于非轻量级卷积神经网络AlexNet和ResNet系列构建的估算模型进行对比试验。开展冬小麦分蘖数估算模型针对不同植株密度数据的鲁棒性以及针对不同生长季数据的泛化能力的验证试验。结果表明,基于MobileNetV2构建的冬小麦分蘖数估算模型的决定系数(R2)为0.7,归一化均方根误差(NRMSE)为0.2,在三个轻量级卷积神经网络中具有最优表现;基于非轻量级卷积神经网络构建的冬小麦分蘖数估算模型体积是基于MobileNetV2构建的冬小麦分蘖数估算模型的2.3~16.1倍。与非轻量级卷积神经网络相比较,基于MobileNetV2构建的估算模型在具有较好R2的同时有较小的体量,适宜嵌入移动终端设备;针对120,270和420 株·m-2三个不同植株密度的可见光图像数据集,基于MobileNetV2构建的冬小麦分蘖数估算模型的R2分别为0.8,0.8和0.7,表现鲁棒;针对两个生长季的可见光图像,基于MobileNetV2构建的冬小麦分蘖数估算模型通过迁移学习将R2提升了2倍,NRMSE下降了7.6%,表现出对数据季节性差异较好的适应性,体现了模型的泛化能力。利用可见光图像,基于MobileNetV2构建的估算模型能够满足冬小麦分蘖数估算需求,为冬小麦生长观测以及田间农艺措施管理决策提供了一个准确、鲁棒、可嵌入移动终端设备的工具。  相似文献   

6.
利用高光谱遥感技术在水稻收获前对籽粒品质相关的蛋白质含量进行监测,一方面可以及时调整栽培管理方式,指导合理追肥,另一方面,有助于提前掌握籽粒品质信息,明确市场定位。该研究以广东省典型优质籼稻为研究目标,基于2019年和2020年两年氮肥梯度实验,以水稻分化期和抽穗期冠层尺度高光谱数据、水稻氮素参数,包括叶片氮素含量(LNC)、叶片氮素积累量(LNA)、植株氮素含量(PNC)、植株氮素积累量(PNA)及籽粒蛋白含量数据为基础,利用四种个体机器学习算法partial least square regression (PLSR)、K-nearest neighbor (KNN)、Bayesian ridge regression (BRR)、support vector regression (SVR),三种集成学习算法random forest (RF)、adaboost、bagging,针对水稻不同生育期氮素状况进行监测建模,在此基础上构建基于水稻冠层光谱信息、光谱信息结合水稻农学氮素参数的籽粒蛋白含量的监测模型,并对模型进行精度对比。研究结果表明,在水稻氮素营养监测方面,利用水稻冠层454~950 nm波段信息,采用RF及Adaboost算法,在水稻分化期、抽穗期及全生育期LNC、LNA、PNC及PNA模型R2均达到0.90以上,同时也具有较低的RMSE和MAE。在水稻籽粒蛋白品质监测方面,采用全波段光谱信息进行籽粒蛋白含量监测时,RF具有最高的精确度与稳定性,两生育期的RF模型对籽粒蛋白含量的监测结果R2分别为0.935和0.941,RMSE分别为0.235和0.226,MAE分别为0.189和0.152;两生育期以全波段光谱信息结合长势参数进行籽粒蛋白监测时,Adaboost模型具有最高的精确度和稳定性,其中分化期全波段光谱信息结合PNA作为输入参数,Adaboost模型R2为0.960,RMSE为0.175,MAE为0.150,以抽穗期全波段光谱信息结合PNC作为输入参数,R2为0.963,RMSE为0.170,MAE为0.137。研究结果表明,与PLSR,KNN,BRR和SVR几种个体学习器算法相比,集成算法RF,Adaboost和Bagging具备良好的处理多重共线性的能力,适合用于高光谱数据的分析与处理,在作物氮素营养监测及水稻品质的早期遥感监测方面具有明显优势。  相似文献   

7.
可见近红外非成像光谱分析技术已被广泛用于土壤有机碳(SOC)含量估测,然而该技术的使用受土壤粗糙度的影响,对样本的前处理要求较高,导致模型的实用性受限。针对这一问题,以美国爱荷华州农田土壤为研究对象,使用成像及非成像光谱仪获取土壤样本研磨前后的可见近红外反射光谱,采用去包络线(CR)、吸光度变换(AB)、S-G平滑(SG)、标准正态变换(SNV)、多元散射校正(MSC)5种光谱预处理手段,利用偏最小二乘回归(PLSR)和支持向量回归(SVR)算法构建并对比土壤SOC光谱估算模型,探究利用成像光谱数据估测高粗糙度样本SOC含量的可行性。实验结果表明,使用成像光谱数据能够实现高粗糙度样本的SOC含量估算,而使用非成像光谱数据则无法估算高粗糙度样本的SOC含量;基于成像光谱数据建立的高粗糙度SOC最优PLSR估算模型R2能够达到0.739以及最优SVR估算模型R2为0.712,而基于非成像光谱数据建立的高粗糙度SOC最优PLSR和SVR估算模型R2仅仅分别为0.344和0.311。基于AB,SG,SNV和MSC这4种预处理手段之后的成像光谱数据建立的土壤样本研磨前的PLSR模型性能优于样本研磨之后建立的PLSR模型,而SVR模型性能正好相反。而对于非成像光谱数据来说,土壤样本研磨后建立PLSR和SVR模型精度总是强于样本研磨前建立的模型精度。对于这两种光谱数据和两个估算模型而言,不同的光谱预处理方法提高模型估算精度的能力不同。土壤样本研磨前后,基于成像光谱数据建立的PLSR和SVR模型性能均优于非成像光谱数据所构建的模型。成像光谱技术能够增强高粗糙度土壤样本可见近红外光谱与SOC的相关性,从而提高模型估算精度;能够克服土壤粗糙度的影响;为野外大尺度估测SOC含量提供了新的手段。  相似文献   

8.
地上生物量(AGB)的精准监测是农田生产管理的重要环节,因此快速准确地估算AGB,对于精准农业的发展十分重要。传统上,获取AGB的方法是采用破坏性取样法,这使得大面积、长期的测量变得困难。无人机高光谱遥感因具有机动性强、光谱分辨率高和图谱合一的优势,成为当前估算大面积作物AGB最有效的技术手段。该研究通过无人机平台搭载成像高光谱传感器分别获取马铃薯块茎形成期、块茎增长期、淀粉积累期的冠层高光谱影像以及利用烘干称重法获取相应生育期实测AGB数据。然后,采用相关性分析法(CAM)、随机蛙跳算法(RFM)和高斯过程回归波长分析工具(GPR-BAT)分别筛选冠层原始光谱(COS)和一阶导数光谱(FDS)的敏感波长,结合偏最小二乘回归(PLSR)和高斯过程回归(GPR)构建各生育期的AGB估算模型,并对比不同模型的估测效果。结果显示:(1)基于同种方法分别筛选COS和FDS的特征波长,结合2种回归技术估算AGB的效果均从块茎形成期到淀粉积累期由好变差。(2)基于FDS分别通过3种方法筛选的特征波长,通过同种回归技术构建的模型效果要优于基于COS的相应效果。(3)基于COS和FDS使用CAM,RFM和GPR-BAT方法筛选的特征波长个数在块茎形成期分别为28,12,6个和12,23,10个,在块茎增长期分别为32,8,2个和18,28,4个,在淀粉积累期分别为30,15,3个和21,33,5个。(4)各生育期基于COS和FDS通过3种方法筛选的敏感波长估算AGB效果由高到低依次均为GPR-BAT,RFM和CAM。(5)各生育期基于FDS通过GPR-BAT方法筛选的敏感波长,结合PLSR建立的模型精度更高、稳定性更强,R2分别为0.67,0.73和0.65,NRMSE分别为16.63%,15.84%和20.81%。研究表明利用无人机高光谱成像技术可以准确地估算AGB,这为实现马铃薯作物长势动态监测,提供科学指导和参考。  相似文献   

9.
无人机多光谱遥感在玉米冠层叶绿素预测中的应用研究   总被引:6,自引:0,他引:6  
叶绿素含量是植物生长中的重要参数,与农作物产量密切相关。无人机遥感技术作为一种新的数据获取手段,在农业中已得到广泛应用。以玉米为目标作物,将具有不同光谱响应函数的两种轻小型多光谱传感器(MCA和Sequoia),同时搭载在六旋翼无人机上,获取不同氮肥水平下大田玉米花期的多光谱影像。利用无人机影像空间分辨率高的特点,在小区尺度上,分别计算了基于两种多光谱传感器的各26种植被指数,并将其与地面实测的叶绿素含量(SPAD)值进行回归分析,研究不同波段反射率对SPAD值的敏感性,利用不同多光谱传感器及植被指数预测SPAD值的精度及稳定性。结果表明,对于具有较宽波段的Sequoia,在550 nm(绿波段)、735 nm(红边波段)的反射率对SPAD值的变化较敏感,其中,550 nm与SPAD值的相关系数最大(R2=0.802 9)。而对于较窄波段的MCA,720 nm(红边波段)的反射率与SPAD值具有较高的相关性(R2=0.724 8),550 nm(绿波段)次之。此外,由于两传感器红波段的中心波长和波段宽度不同,660 nm(Sequoia)反射率与SPAD值的相关系数为0.778 6,而680 nm(MCA)反射率与SPAD值的相关性较小,仅为0.488 6。利用无人机多光谱遥感技术预测大田玉米的SPAD值精度较高,但对于不同的多光谱传感器而言,同一植被指数却表现出较大的差异,其中,红波段和近红外波段组合构造的植被指数RVI,NDVI,PVI和MSR差异较大,具有较宽波段的Sequoia传感器优于窄波段的MCA;此外,对于Sequoia相机,GNDVI与RENDVI预测SPAD值的精度较高,RMSE分别为3.699和3.691;对于MCA相机,RENDVI预测精度最高(RMSE=3.742),GNDVI预测精度低于RENDVI(RMSE=3.912);两传感器中MCARI/OSAVI预测SPAD值精度均较低,RMSE分别为7.389(Sequoia)和7.361(MCA)。在所有的植被指数中,利用绿波段和近红外波构造的植被指数(G类),以及用红边波段和近红外波段构造的植被指数(RE类),预测SPAD值精度更高,均高于红外和近红外波段构造的植被指数;利用更多波段(三个及以上)组合构造的复杂植被指数,并不能显著提高预测精度。就预测模型而言,MCARI1更适用于对数模型,可有效提高预测精度, 而其他植被指数变化不显著。研究还发现,在小区水平SPAD值的预测方面,除NDVI和TVI,Sequoia相机对于不同氮肥条件下植被覆盖度、阴影和裸露土壤等环境背景因素具有较强的抗干扰能力;而对于MCA相机来说,TVI,DVI,MSAVI2,RDVI和MSAVI对环境背景因素非常敏感,预测SPAD精度低;此外,去除环境背景因素并不总是能够提高SPAD值的预测精度。本研究对于利用无人机多光谱遥感技术进行高精度的叶绿素含量预测具有指导意义,对于精准农业的推广和应用具有一定的借鉴价值。  相似文献   

10.
农业是国家经济发展的基础支柱,同时也是社会发展的基础产业。我国农业遥感技术的进步和发展,大量遥感卫星发射升空,如高分1号、2号和6号等,为我国农情监测、作物长势、农业产业结构调整提供了重要技术支撑。农业遥感成为农业科技创新和精准农业的重要手段。叶面积指数(LAI)是一种可用来衡量植被冠层生理与生化的关键指标,不仅可以用来评估植被冠层表面的最初能量交换情况,提供相应的结构定量数据,还能反映植被冠层的光谱能量信息。同时,在陆地气候变化情况下,叶面积指数是陆地生态系统和土地利用过程生产力模型的关键输入。此外,研究发现植被冠层受人为活动和气候变化的直接或间接影响时,叶面积指数也是陆地生态系统应对气候变化十分重要的衡量标准。因此,针对GF-6 WFV遥感影像叶面积指数反演研究较少和传统光谱植被指数模型机理性、稳定性较弱的问题。基于GF-6 WFV遥感影像以栾城县为试验区,通过光谱植被指数与实测叶面积指数构造5种传统光谱植被指数模型和15种红边参与的光谱植被指数模型反演乳熟期叶面积指数,采用R2和RMSE进行模型评价,同时利用未参与建模的实测叶面积指数和MODIS LAI产品验证模型。实验结果表明:(1)由相关性分析可知,整体上讲,20种光谱植被指数与LAI具有显著相关性,相关系数在0.4以上,且红边参与构造的光谱指数相关性要高于无红边参与构造的光谱指数,其中NDSI的相关性最优;(2)由拟合分析可知,整体上讲,20种光谱植被指数与LAI拟合效果较好,其中NDS13的拟合精度是最高的,R2为0.803,RMSE为0.301 2。(3)由反演的空间分布可知,反演结果符合当地的实际情况。(4)由实测叶面积指数验证模型可知,实测叶面积指数与NDSI3模型反演的LAI整体拟合较好,R2为0.804,RMSE为0.312 5,说明该模型能有效反演乳熟期玉米的生长状况。(5)由MODIS LAI产品验证模型可知,LAIMODIS均值要高于LAIGF-6,这与MODIS影像像元混合严重和空间分辨率低有关。综上所述,GF-6WFV反演叶面积指数能力较强,其影像中红边参与构造的光谱植被指数模型能有效反演乳熟期叶面积指数,为玉米长势监测提供依据。  相似文献   

11.
无人机高光谱波段选择的叶面积指数反演   总被引:1,自引:0,他引:1  
叶面积指数(LAI)是评价作物长势和作物产量的重要参数。为有效利用高光谱信息,优选出最佳波段进而构建新型双波段指数来提高LAI估测精度,以冬小麦为研究对象,获取冬小麦孕穗期无人机高光谱数据和实测地面LAI数据,开展冬小麦LAI反演研究。首先采用连续投影算法(SPA)、最佳指数法(OIF)以及逐波段组合法(E)分别进行无人机高光谱数据最佳波段筛选,进而将所选最佳波段构建新型双波段指数(VI_OIF,VI_SPA,VI_E);然后将构建的新型双波段指数和常规双波段指数(VI_F)与LAI进行相关性对比分析,最后结合支持向量回归(SVR)、偏最小二乘回归(PLSR)和随机森林回归模型(RFR)进行LAI估算,并对比分析常规双波段指数的估算精度,验证最佳波段选择方法构建新型双波段指数的最佳回归模型反演LAI的可行性。结果表明:(1)新构建双波段指数VI_OIF,VI_SPA,VI_E和VI_F与冬小麦LAI的相关性均达到0.05的显著水平,其中VI_SPA和VI_E与LAI的相关系数高于0.65,且RSI_SPA和RSI_E与LAI的相关性较高(r>0.71);(2)对比分析VI_OIF、VI_SPA、VI_E和VI_F构建的SVR模型、PLSR模型和RFR模型的冬小麦LAI估测精度,VI_SPA_PLSR模型估测精度最高,R2和RMSE分别为0.75和0.90。该方法可为无人机高光谱数据波段选择以及冬小麦LAI反演提供技术支持和理论参考。  相似文献   

12.
叶绿素是反映绿色植被健康状态的重要生理参数,虫害胁迫下叶绿素与叶光谱的变化机制较为复杂,深入剖析二者关系对于虫害检测有重要意义。以福建省南平市顺昌县为试验区,测定不同受害情景下毛竹叶叶绿素含量(SPAD)与叶光谱,采用Pearson相关法筛选叶光谱特征指标,建立叶SPAD的多元线性回归、岭回归、随机森林与XGBoost估测模型。通过比较光谱特征指标筛选结果及模型估测效果,分析刚竹毒蛾胁迫下毛竹叶绿素与叶光谱特征的关系及其变化。结果表明:(1)随着虫害程度上升,毛竹叶SPAD呈下降趋势;(2)较之于未受害状态,刚竹毒蛾胁迫下毛竹叶光谱特征发生明显变化,“绿峰”和“红谷”趋于消失,“红边”斜率减小,近红外波长反射率降低;(3)基于全样本拟合叶SPAD的最优光谱特征指标为VOG2,R515/R570,CIred,PRI与NDVI705,最佳估测模型为多元线性回归模型(R2=0.753 7,RMSE=3.015 0);(4)基于不同受害程度样本拟合毛竹叶SPAD,最优光谱特征指标分别为健康:CIred,VOG2,ARVI,R515/R570,DVI;轻度:RENDVI,RERVI,REDVI;中度:RENDVI,RERVI,REDVI;重度:VOG2,CIred,NDVI705,PRI;小年:PRI,NDVI705,VOG1,CIred。最佳估测模型为多元线性回归模型,模型精度分别为健康(R2=0.882 3;RMSE=1.638 8);轻度(R2=0.180 2;RMSE=3.335 4);中度(R2=0.360 4;RMSE=3.886 7);重度(R2=0.467 7;RMSE=2.601 8);小年(R2=0.732 4;RMSE=2.375 4)。由此发现,随着虫害等级上升,毛竹叶光谱特征指标也随之改变,关系模型估测精度呈现先急剧下降后缓慢抬升的态势,模型对健康与小年叶SPAD估测效果较好,对轻—中—重度危害叶SPAD估测效果较差;当毛竹叶SPAD与叶光谱特征的关系趋向紊乱时,预示可能有刚竹毒蛾危害发生。  相似文献   

13.
氮素是影响冬小麦生长的重要元素,如何根据冬小麦需求适时变量施用氮肥是现代农业精准施肥研究需要解决的关键问题之一。无人机遥感技术在冬小麦生长情况监测中具有高分辨率、高时效性、低成本等优势,为解决施肥需求监测问题提供了重要数据源。因此研究无人机多光谱影像数据,构建其与冬小麦产量与施肥量之间的关系模型对于精准施肥研究十分重要。选择冬小麦典型生产区山东省桓台县为实验区,布置4种不同施氮水平的田间实验。利用无人机搭载Sequoia多光谱传感器,采集实验区不同氮素施肥水平的冬小麦返青初期多光谱影像,同时测得冬小麦冠层叶绿素含量(soil and plant analyzer development,SPAD)数据及产量数据。通过多光谱影像数据计算获得归一化植被指数(normalized difference vegetation index,NDVI)、叶绿素吸收指数(modified chlorophyll absorption ratio index,MCARI2)等6种形式植被指数,建立无人机多光谱影像植被指数与小麦冠层SPAD值的线性、二阶多项式、对数、指数和幂函数模型,优选地面氮素状况最优植被指数模型,反演冬小麦不同施氮水平的状况,进而根据不同施氮水平与敏感植被指数和冬小麦产量的关系,构建了基于植被指数指标的氮肥变量施肥模型,并将模型应用于同时期小麦多光谱影像。结果如下:(1)地面实测的SPAD值能较好的反映冬小麦施氮水平及生长状况。无人机多光谱数据分区统计结果表明不同施氮水平冬小麦冠层反射率有较大差异性。(2)结构性植被指数与SPAD拟合效果优于其他类型指数。MCARI2的二阶多项式模型精度最优(R2=0.790,RMSE=0.22),其能较好的移除冬小麦返青初期土壤背景等因素的影响,为氮肥敏感植被指数。(3)基于产量-施氮量模型和产量-敏感植被指数模型,构建敏感植被指数的氮肥变量施肥模型为Nr=10 707.63×MCARI22-5 992.36×MCARI2+715.27。通过模型应用生成了实验区冬小麦氮肥变量施肥图,与实际情况具有较高一致性。该研究提出了利用无人机多光谱数据进行冬小麦施氮决策的模型及方法,为冬小麦精准施肥的进一步研究提供了依据。  相似文献   

14.
光谱指数的植物叶片叶绿素含量估算模型   总被引:4,自引:0,他引:4  
叶片叶绿素能够有效监测植被的生长状况,利用光谱指数反演植被叶绿素含量是目前的通用方法。实测了盐生植物光谱反射率和叶片叶绿素含量。对SPAD值进行变换,对比Pearson与VIP方法探讨盐生植被叶片叶绿素含量与植被指数的相关性并进行精度验证,从中选出最佳拟合模型。研究表明,通过对Pearson与VIP相关性分析,最终选定VIP方法建立植被指数的叶片叶绿素估算模型,NDVI705,ARVI,CIred edge,PRI,VARI,PSRI和NPCI的VIP值均大于0.8,因此选定这七个植被指数为最优植被指数;预测结果显示,所有模型的相关性都在0.7以上,预测值与实测值相关性最好的是经过倒数变换的SPAD值,R=0.816,RMSE=0.007。基于VIP方法的反演模型能较好地估算研究区植被叶绿素含量,该方法为植物叶绿素含量诊断的实际应用提供了重要的理论依据和技术支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号