首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
为了快速感知并分析田间作物生长状况,采用先进的半导体镀膜工艺光谱成像传感器,研究了玉米植株冠层叶绿素含量分布式检测方法。试验采用IMEC 5×5成像传感器,拍摄47株苗期玉米植株冠层,获取673~951 nm范围内的25个波长的光谱图像。实验中,利用SPAD-520叶绿素仪非破坏性地测量叶绿素含量,每株玉米冠层叶片设置2~3个采样点,每点测量3次取平均,共计242个样本数据。对光谱图像数据,经4灰度级标准板提取并校准反射率。为了实现玉米植株与花盆、土壤背景的有效分离,在分析不同对象光谱反射率与图像像素特征的基础上,提出了一种基于谱图特征组合的植株分割方法,即基于植被指数的图像初步分割与区域标记计算的冠层精细分割的植株提取算法。首先,计算各像素点归一化植被指数(NDVI),并开展基于NDVI的植株冠层分割方法分割结果优于基于最大类间方差法的全局阈值自适应分割算法。其次,采用边缘保持中值滤波算法剔除初步分割后图像中存在的噪声点后,基于区域标记算法进行精细分割,获得掩膜并最终得到仅保留玉米植株冠层的光谱图像。分别采用相关分析法(CA)和随机蛙跳(RF)算法选取反射光谱特征波长,并构建750~951 nm近红外(NIR)和673~750 nm红色(R)选中波长集合,遍历NIR和R集合组合计算比值植被指数(RVI),差值植被指数(DVI),归一化植被指数(NDVI)和SPAD转换指数(T_(SPAD))。然后,再次采用CA和RF算法筛选植被指数,利用SPXY算法将样本按照7∶3比例划分为建模集和验证集,并建立了叶绿素含量指标检测CA+RF-PLSR模型。结果表明,其建模集R■为0.573 9, RMSEC为3.84%,验证集R■为0.420 2, RMSEC为2.3%。利用建模结果对多光谱图像进行处理,绘制玉米叶片SPAD值伪彩色分布图,实现叶绿素含量分布可视化。研究表明采用镀膜型光谱成像数据,分析对象光谱与图像特征,探讨玉米冠层叶绿素含量分布检测的可行性,可为直观监测作物生长动态提供支持。  相似文献   

2.
以大型喷灌机为平台的近地遥感技术可有效观测作物的生长状态,对田间生产管理和作物水肥需求特性等研究具有十分重要的意义。由于在遥感观测过程中,作物冠层具有二向反射特性,因此不同观测方式会影响遥感观测结果。通过自行搭建的近地遥感系统模拟大型喷灌机平台的实地观测条件,使用双通道光谱传感器获取小麦与玉米冠层的光谱反射率信息,引入变异系数CV对由冠层二向反射特性引起的信息数据变幅进行量化,并采用影响因素权重W分析各观测参数对数据变幅的影响程度。通过获取2019年冬小麦返青期至灌浆期、夏玉米V7-V14生育期的冠层近红外波段(810 nm)和红光波段(650 nm)的反射率数据,分析多种观测因素对比值植被指数(RVI)数据和植被归一化指数(NDVI)数据的影响。结果表明,观测高度(0.5~2.5 m)、观测频率(2~60次·min-1)和移动速度(0~4 m·min-1)与观测结果无显著相关关系(p>0.05),观测时刻(8:00-18:00)、观测天顶角(-60°~60°)和观测方位角(0°~180°)与观测结果相关关系极为显著(p<0.01);小麦和玉米的冠层RVI、NDVI数据获取结果主要取决于冠层覆盖程度,在相同叶面积指数(LAI)情况下观测结果也会因观测时刻、观测方位角和观测天顶角的差异而受到不同程度的影响;冠层光谱反射率信息二向反射特性明显,小麦冠层RVI和NDVI变异系数分别为15%~50%和2%~50%,玉米冠层RVI和NDVI变异系数分别为10%~33%和18%~39%;进行观测时,应尽量选择在太阳天顶角较稳定的12:00-14:00时段,并尽量缩短观测时长,还应选择固定的观测角度,注意阴影效应与热点效应的影响;此外,在小麦返青至拔节期、抽穗至扬花期获取RVI和NDVI时,还应分别注意观测天顶角、观测时刻对测量精度的干扰。研究结果可为快速获取高精度的小麦、玉米冠层光谱反射率数据提供技术支撑。  相似文献   

3.
农作物遥感估产区划是农作物遥感估产的基础,它为估产研究和实践提供了重要的科学依据。以冬小麦生育期内的MODIS EVI时间序列作为分区数据,选择江苏省为试验区,探讨了一种改进的光谱角制图和K均值聚类相结合(光谱角聚类)的分区方法,并在冬小麦遥感估产中进行了试验。结果表明:光谱角聚类分区方法充分利用了MODIS时间序列数据所反映的农作物生长进程,可以充分体现气候差异所带来的冬小麦区域差异;与传统分区相比,基于光谱角聚类分区方法所得到的遥感估产结果具有较高的决定系数R2(0.702 6比0.624 8)和较低的均方根误差RMSE(343.34比381.34 kg·hm-2),体现了该分区方法在冬小麦遥感估产中的优势。光谱角聚类分区方法仅以获取便利的低分辨率时间序列遥感数据为分区数据,且能很好的将冬小麦划分为特征性质一致的区域,所得遥感估产模型的精度和稳定性也较好,为冬小麦遥感估产分区提供了一种有效方法,有利于进行冬小麦遥感估产研究。  相似文献   

4.
玉米作物多光谱图像精准分割与叶绿素诊断方法研究   总被引:3,自引:0,他引:3  
为了快速获取大田玉米作物长势信息,基于多光谱图像开展了大田玉米叶绿素指标的非破坏性诊断研究。应用自主开发的2-CCD多光谱图像感知系统,在田间采集玉米冠层可见光[Blue(B),Green(G),Red(R);400~700 nm]和近红外(Near-infrared: NIR,760~1 000 nm)图像,并使用SPAD同步测量样本叶绿素指标。采集后图像经自适应平滑滤波处理后,进行图像玉米植株提取。为了选择最优算法实现玉米植株与杂草、土壤背景的分割,首先比较了最大类间方差(OTSU)分割算法和局部阈值处理分割算法,选取了基于局部统计的可变阈值处理方法对玉米NIR图像进行初步分割,进而采用区域标记算法进行精细分割,分割准确率达95.59%。将分割结果应用于玉米植株可见光图像R,G,B各通道,从而实现了玉米植株多光谱图像中可见光图像的整体分割。基于分割后R,G,B和NIR四个通道的玉米冠层图像,提取了各通道图像灰度均值(ANIR,ARed,AGreenABlue)并计算了归一化植被指数(NDVI)、比值植被指数(RVI)和绿色归一化植被指数(NDGI)作为光谱特征参数,建立了玉米冠层叶绿素指标诊断的偏最小二乘法回归模型。结果表明,建模R2达0.596 0,预测R2达0.568 5,该方法通过玉米多光谱图像特征参数评估叶片叶绿素含量,可为大田玉米长势监测提供支持。  相似文献   

5.
为了快速获取大田玉米作物长势信息, 基于多光谱图像开展了大田玉米叶绿素指标的非破坏性诊断研究。应用自主开发的2-CCD多光谱图像感知系统, 在田间采集玉米冠层可见光[Blue(B), Green(G), Red(R);400~700 nm]和近红外(Near-infrared: NIR, 760~1 000 nm)图像, 并使用SPAD同步测量样本叶绿素指标。采集后图像经自适应平滑滤波处理后, 进行图像玉米植株提取。为了选择最优算法实现玉米植株与杂草、土壤背景的分割, 首先比较了最大类间方差(OTSU)分割算法和局部阈值处理分割算法, 选取了基于局部统计的可变阈值处理方法对玉米NIR图像进行初步分割, 进而采用区域标记算法进行精细分割, 分割准确率达95.59%。将分割结果应用于玉米植株可见光图像R, G, B各通道, 从而实现了玉米植株多光谱图像中可见光图像的整体分割。基于分割后R, G, B和NIR四个通道的玉米冠层图像, 提取了各通道图像灰度均值(ANIR, ARed, AGreen和ABlue)并计算了归一化植被指数(NDVI)、比值植被指数(RVI)和绿色归一化植被指数(NDGI)作为光谱特征参数, 建立了玉米冠层叶绿素指标诊断的偏最小二乘法回归模型。结果表明, 建模R2达0.596 0, 预测R2达0.568 5, 该方法通过玉米多光谱图像特征参数评估叶片叶绿素含量, 可为大田玉米长势监测提供支持。  相似文献   

6.
为解决大豆冠层在近地端的多光谱图像边缘灰度不均,目标与背景之间灰度差别小,难以准确高效地获取大豆冠层目标区域的难题,将多光谱成像处理技术与经典图像分割方法有机融合,提出基于多光谱图像处理技术的大豆冠层提取方法。以东北大豆为对象,通过Sequoia多光谱相机采集绿光、近红外、红光、红边和可见光五类大豆多光谱图像,采用高斯平滑滤波法对原始大豆多光谱图像进行预处理,分析多光谱图像中大豆冠层和背景的灰度直方图分布特性,在此基础上利用迭代法、Otsu法和局部阈值法提取原大豆多光谱图像中冠层区域,并以图像形态学开运算处理细化和扩张背景,避免图像区域内干扰噪声对大豆冠层识别效果的影响,同时以有效分割率、过分割率、欠分割率、信息熵以及运行时间等为监督指标,对大豆冠层多光谱图像识别模型进行效果评价。大豆冠层识别模型中迭代法可以有效分割近红外和可见光大豆冠层图像,有效分割率分别为97.81%和87.99%,对绿光、红光和红边大豆冠层图像分割效果较差,有效分割率低于70%;Otsu法和局部阈值法可以有效分割除红光波段的其余四种多光谱大豆冠层图像,且有效分割率均在82%以上;三种算法对红光大豆冠层图像的有效分割率均低于20%,未达到较好效果。在原始多光谱图像中应用迭代法、Otsu法和局部阈值法提取大豆冠层图像与标准图像的信息熵平均值波动幅度分别为:0.120 1,0.054 7和0.059 8,其中Otsu法和局部阈值法较小,表明了对于大豆冠层多光谱图像识别中两种算法的有效性。该算法中Otsu法和局部阈值法均可以有效提取绿光、近红外、红边和可见光等多光谱的大豆冠层图像,二者较为完整地保留了大豆冠层信息,其中Otsu法实时性能较局部阈值法更好。该成果为提取农作物冠层多光谱图像提供理论依据和技术借鉴。  相似文献   

7.
氮素是影响冬小麦生长的重要元素,如何根据冬小麦需求适时变量施用氮肥是现代农业精准施肥研究需要解决的关键问题之一。无人机遥感技术在冬小麦生长情况监测中具有高分辨率、高时效性、低成本等优势,为解决施肥需求监测问题提供了重要数据源。因此研究无人机多光谱影像数据,构建其与冬小麦产量与施肥量之间的关系模型对于精准施肥研究十分重要。选择冬小麦典型生产区山东省桓台县为实验区,布置4种不同施氮水平的田间实验。利用无人机搭载Sequoia多光谱传感器,采集实验区不同氮素施肥水平的冬小麦返青初期多光谱影像,同时测得冬小麦冠层叶绿素含量(soil and plant analyzer development,SPAD)数据及产量数据。通过多光谱影像数据计算获得归一化植被指数(normalized difference vegetation index,NDVI)、叶绿素吸收指数(modified chlorophyll absorption ratio index,MCARI2)等6种形式植被指数,建立无人机多光谱影像植被指数与小麦冠层SPAD值的线性、二阶多项式、对数、指数和幂函数模型,优选地面氮素状况最优植被指数模型,反演冬小麦不同施氮水平的状况,进而根据不同施氮水平与敏感植被指数和冬小麦产量的关系,构建了基于植被指数指标的氮肥变量施肥模型,并将模型应用于同时期小麦多光谱影像。结果如下:(1)地面实测的SPAD值能较好的反映冬小麦施氮水平及生长状况。无人机多光谱数据分区统计结果表明不同施氮水平冬小麦冠层反射率有较大差异性。(2)结构性植被指数与SPAD拟合效果优于其他类型指数。MCARI2的二阶多项式模型精度最优(R2=0.790,RMSE=0.22),其能较好的移除冬小麦返青初期土壤背景等因素的影响,为氮肥敏感植被指数。(3)基于产量-施氮量模型和产量-敏感植被指数模型,构建敏感植被指数的氮肥变量施肥模型为Nr=10 707.63×MCARI22-5 992.36×MCARI2+715.27。通过模型应用生成了实验区冬小麦氮肥变量施肥图,与实际情况具有较高一致性。该研究提出了利用无人机多光谱数据进行冬小麦施氮决策的模型及方法,为冬小麦精准施肥的进一步研究提供了依据。  相似文献   

8.
作物植被覆盖度的高光谱遥感估算模型   总被引:5,自引:1,他引:4  
通过大田试验,使用ASD光谱仪测量了油菜、玉米、水稻三种作物不同覆盖度水平下的冠层光谱,同时拍照获取植被图片并用计算机求算了植被覆盖度。利用三种作物光谱求算“红边”变量,并对波段两两组合求算归一化植被指数(NDVI),建立这些光谱变量与覆盖度之间的估算模型,得到适用于三种作物的最优估算模型和最佳的NDVI波段组合。另外,利用响应函数模拟了TM归一化植被指数,同植被覆盖度进行了相关分析,回归方程的R2达到0.80,并通过了预留数据的检验,为TM数据植被覆盖度估算进行了探索性的研究。  相似文献   

9.
基于最优光谱指数的大豆叶片叶绿素含量反演模型研究   总被引:1,自引:0,他引:1  
叶绿素含量的准确获取及预测可为作物种植的精准化管理提供理论依据。利用最优光谱指数建立大豆叶绿素含量反演模型,以大豆花芽分化期叶片为研究对象,获取高光谱和叶绿素含量数据。首先构建了7种与叶绿素含量相关的典型光谱指数,分别为比值指数(RI)、差值指数(DI)、归一化差值植被指数(NDVI)、修正简单比值指数(mSR)、修正归一化差值指数(mNDI)、土壤调节植被指数(SAVI)和三角形植被指数(TVI),并对原始高光谱进行一阶微分(FD)处理,随后分别对原始和一阶微分高光谱在全光谱波长范围内两两组合所有波长,进行14个光谱指数的计算。再采用相关矩阵法进行最优光谱指数的提取,将所有波长组合计算出的光谱指数与叶绿素含量进行相关性分析,以相关系数最大值为指标,提取出14组最优的波长组合,并进行对应光谱指数值的计算作为最优光谱指数。最后将最优光谱指数划分为3组模型输入变量,分别与偏最小二乘回归(PLS)、最小二乘支持向量机回归(LSSVM)和套索算法LASSO回归3种方法组合建模并对比分析,以决定系数R2c,R2p和均方根误差RMSEC,RMSEP作为模型评价指标,最终优选出精度最高的大豆叶片绿素含量反演模型。结果表明:14组最优光谱指数波长组合分别为RI(728,727),DI(735,732),NDVI(728,727),mSR(728,727),mNDI(728,727),SAVI(728,727),TVI(1 007,708),FDRI(727,708),FDDI(727,788),FDNDVI(726,705),FDmSR(726,705),FDmNDI(726,705),FDSAVI(727,788)和FDTVI(760,698),相关系数最大值rmax均大于0.8。建立最优模型的方法为输入变量为一阶微分光谱指数(组合2)与LSSVM组合的建模方法,所建模型的R2c=0.751 8,R2p=0.836 0,RMSEC=1.361 2,RMSEP=1.220 4,表明模型精度较高,可为大面积监测大豆的生长状态提供参考。  相似文献   

10.
为了快速感知并分析田间作物生长状况,采用先进的半导体镀膜工艺的光谱成像传感器,研究镀膜型光谱成像数据的提取与叶绿素含量分布式检测的方法。实验采用基于镀膜原理的IMEC 5×5成像单元式多光谱相机,对47株苗期玉米植株的冠层进行拍摄,获取673~951 nm范围内的25个波长的光谱图像。利用SPAD-520叶绿素仪非破坏性地测量叶绿素含量指标,每株玉米冠层叶片设置2~3个采样点,每点测量3次取平均,共计251个样本数据;同时使用ASD Handheld2型光谱仪采集相应位置区域的反射率曲线,以对比分析镀膜型光谱成像传感器提取玉米植株冠层叶片反射率曲线的特性。首先,在分析镀膜型光谱成像传感器的成像原理的基础上,通过对原始图像的拆分和重组分别提取成像单元中相同波段的像素灰度值,并利用相同波段的像素灰度值重构单波段光谱图像,获取各波段光谱图像。其次,利用4灰度级标准板建立图像灰度值和灰度板反射率之间的线性反演公式,对提取的反射率进行校准。然后,为了准确分割出玉米植株冠层,提出了大津算法(OTSU)和霍夫圆变换组合的玉米植株冠层图像二次分割方法,分别剔除图像中土壤和培养盆背景的干扰。最后,利用马氏距离算法剔除异常样本数据,利用SPXY (sample set partitioning based on joint X-Y distance)算法划分建模集和验证集,采用偏最小二乘回归法(PLSR)建立玉米植株叶绿素含量指标诊断模型,并绘制其分布伪彩色图用于分析叶绿素含量空间分布特征。研究结果表明,①对25波段多光谱图像提取和反射率线性校准拟合模型决定系数均达到0.99以上。分析校准前和校准后与ASD光谱仪测量反射率曲线,镀膜型成像传感器获取玉米冠层反射光谱总体与ASD采集反射率体现的光谱特征一致,且校正后数据比校正前与ASD光谱反射率的一致性得到了提升。②建立初次OTSU分割算法和基于霍夫圆变换识别的二次分割算法,可以有效剔除玉米植株光谱图像中的土壤和培养盆背景噪声的干扰。③叶绿素含量指标PLSR诊断模型建模集R■为0.545 1,验证集R■为0.472 6。玉米作物冠层叶绿素分布可视化图可以直观反映叶绿素含量分布与生长动态情况。通过对镀膜型光谱成像传感器应用方法的研究,为后续玉米植株叶绿素动态快速检测奠定基础和提供技术支持。  相似文献   

11.
红外光谱分析是基于分子振动与跃迁理论的鉴别物质化学组成的技术。得到的光谱数据常常具有较高的维数和重叠度,这给后续的数据处理带来困难。为此提出一种GK可能C均值聚类算法(GKIPCM),引入了GK聚类算法的马氏距离测度与改进的可能C均值聚类算法(IPCM)的模糊隶属度与聚类中心更新方程,使样本的距离测度具有自适应性且避免了聚类中心的一致性。GKIPCM算法具有分类精度更高,分类准确率对参数敏感性低的优点。将四组洗净白菜作为光谱分析对象,分别施加三种农药(高效氯氟氰菊酯)配比,采用安捷伦Cary 630 FTIR光谱仪采集白菜的傅里叶中红外光谱(FT-MIR)。首先对样本进行预处理,使用多元散射矫正(MSC)对光谱数据降噪,消除数据偏移量;其次,由于采集到的数据波数范围为4 300~590 cm-1,数据维数达到了971维,故使用主成分分析(PCA)对数据实现降维,降维后的数据维度减小到了23,且23个主成分的累积贡献率高达99.60%;但各类光谱的特征信息依然混杂在一起,故使用线性判别分析(LDA)提取特征鉴别信息,进一步将数据降至3维;最终,运行模糊C-均值聚类算法(FCM)得到较优初始聚类中心,使用GKIPCM算法对四类降维后的光谱数据进行聚类分析,并与GK聚类算法与IPCM聚类算法的运行结果作对比。GKIPCM算法的总迭代时长为0.218 8 s,分类准确率达到了97.22%。相较之下,GK算法与IPCM算法的准确率分别为63.89%和91.67%,运行的总时长为0.093 8与0.062 5 s。从实验结果可看出,GKIPCM算法可以通过分析光谱数据从而完成对不同程度农药残留进行定性分析的任务。  相似文献   

12.
模糊非相关鉴别C均值聚类的茶叶傅里叶红外光谱分类   总被引:1,自引:0,他引:1  
茶是一种让人喜爱的健康饮品,不同品种的茶叶其功效和作用是不相同的。研究出一种可靠、简单易行、分类速度快的茶叶品种鉴别方法具有重要的意义。在模糊非相关判别转换(FUDT)算法和模糊C均值聚类(FCM)算法的基础上提出了一种模糊非相关鉴别C均值聚类(FUDCM)算法。FUDCM可以在聚类过程中动态提取光谱数据的模糊非相关鉴别信息。用FTIR-7600型傅里叶红外光谱分析仪分别采集优质乐山竹叶青、劣质乐山竹叶青和峨眉山毛峰三种茶叶的傅里叶中红外光谱,波数范围为4 001.569~401.121 1 cm-1。先用多元散射校正(MSC)进行光谱预处理,然后用主成分分析法(PCA)将光谱数据降维到20维,再利用线性判别分析(LDA)提取光谱数据中的鉴别信息。最后分别运行FCM和FUDCM进行茶叶品种鉴别。实验结果表明:当权重指数m=2时,FCM的聚类准确率为63.64%,FUDCM的聚类准确率为83.33%;FCM经过67次迭代计算实现了收敛,而FUDCM仅需17次迭代计算就可以实现收敛。用傅里叶红外光谱技术结合主成分分析、线性判别分析和FUDCM的方法能快速、有效地实现茶叶品种的鉴别分析,且鉴别准确率比FCM更高。  相似文献   

13.
基于无人机遥感的不同施氮水稻光谱与植被指数分析   总被引:1,自引:0,他引:1  
卫星遥感空间分辨率低且易受大气、云层、雨雪等因素的影响。本文使用共轴十二旋翼无人机搭载光谱仪构成农情遥感系统。首先,给出自主设计的无人机结构和飞行控制系统,围绕飞行平台、控制系统、遥感载荷构建了多环节数据备份的无人机遥感数据采集系统;然后,试验测试4种施氮水平水稻的光谱指数变化规律;最后,通过试验数据分析可得:在可见光区水稻冠层光谱反射率随氮素水平增加而减小,在近红外区,光谱反射率一开始随氮素水平增加而增大,但氮素水平增大到一定程度后再增加氮素导致反射率降低。在4种氮素水平下,水稻植被指数RVI和NDVI由分蘖期到拔节期先增大,然后至抽穗期又逐渐减小,且抽穗期RVI和NDVI值小于其分蘖期RVI和NDVI值。试验表明以多旋翼无人机为平台搭载光谱仪器构成农情遥感监测系统用于反演作物植被指数方面是可行的。本文设计的无人机遥感数据采集系统能够有效、实时获取遥感信息,其获取的高空间分辨率和光谱分辨率的农田实时信息能够为作物长势的分析、健康状况的监测提供必要的数据支持。  相似文献   

14.
叶面积指数(LAI)是目前最常用的农业生态监测指标,可以为农作物的病虫害监测、作物长势监测、碳循环、生物量估算及作物估产提供依据。植被指数(VI)是卫星LAI产品生产的重要数据源,但不同VIs对植被LAI的响应特征具有一定的差异性。以江西省水稻为例,基于实测光谱提取了水稻实测VIs,结合实测LAI,讨论了归一化植被指数(NDVI)、增强型植被指数(EVI)、土壤调节植被指数(SAVI)和修正的土壤调节植被指数(MSAVI)四种常见VIs对LAI的响应特征,并与MODIS LAI备用算法的计算结果进行了对比分析,研究了不同VIs用于LAI产品反演的可行性及存在的问题。通过对不同实测VIs-LAI模型精度的评估,分析其应用于LAI反演的适应性,结果显示EVI,SAVI和MSAVI比NDVI有更好的适应性,其中EVI效果最优。此外,通过对比MODIS LAI备用算法查找表,发现针对MODIS LAI备用算法中草地与谷物作物这一地表覆盖大类,在LAI>4时,NDVI出现饱和;而实测水稻作物的NDVI在LAI>2时开始出现饱和;且当NDVI相同时,查找表LAI远大于实测LAI,MODIS备用算法中使用的地表覆盖产品分类过粗可能是造成这一结果的主要原因。因此MODIS LAI备用算法在该区域水稻LAI监测中可能产生较大误差,有必要改用其他VIs优化该备用算法。通过对比分析四种VIs模型对LAI的预测误差,发现EVI,SAVI和MSAVI精度明显优于NDVI,基于EVI的模型平均预测误差仅为MODIS LAI备用算法的1/6,基于实测NDVI反演算法的1/2,因此设计基于EVI的LAI算法对LAI的反演精度有一定的提升空间。  相似文献   

15.
冠层是植被进行生态过程的主要层次,森林冠层结构影响冠层生化组分的遥感反演,因此对其光谱特征的分析有助于提高冠层生化组分反演的精度。以长白山温带阔叶红松林为研究对象,利用Hyperion高光谱数据提取不同林冠反射率,运用连续统去除和光谱一阶微分法进行光谱变换,定量分析森林冠层的光谱特征。通过计算样方阔叶树种优势度(BFDI),以及一系列光谱指数(NIR,NDVI,EVI,NDNI,SPRI*NDVI和SPRI*EVI),探讨冠层结构组成对其光谱特征及光谱指数的影响。结果表明:(1)相比阔叶林冠层,针阔混交林、美人松林和樟子松林冠层光谱的红边有左移趋势,斜率明显下降,蓝边、黄边斜率特征也相应减弱,近红外波段反射率明显下降,可见光波段的归一化反射率有上升趋势,表明不同林冠,尤其针叶林与阔叶林林冠之间的光谱特征差异明显。(2)BFDI对冠层NIR反射率和三边斜率有明显的影响,与光谱指数显著相关(P<0.01),表明BFDI影响森林光谱指数。BFDI与NDVI,EVI,SPRI*EVI,NIR,SPRI*NDVI,NDNI的R2分别达到0.90,0.83,0.83,0.81,0.68,0.59,揭示了BFDI对于冠层绿度、叶面积指数、植被生产力以及冠层叶氮浓度等植被参数存在一定影响。研究表明,利用星载高光谱数据结合地面样方调查可以很好地阐明林冠结构组成对于光谱特征的影响,也对优化植被冠层生化组分和森林生态系统生产力的遥感反演具有借鉴意义。  相似文献   

16.
植株氮素浓度是反应作物氮素营养状况的关键指标,对作物的产量与品质具有重要的影响。作物大面积氮素营养的实时监测不仅对区域上氮肥投入提供决策,而且还对区域上氮素循环的估算提供依据。传统的地面传感器虽然有较高的精度,但很难在区域尺度上大面积获取数据,且目前存在的高光谱卫星影像如MODIS,Hyperion的空间分辨率普遍不高。随着卫星遥感的发展,近些年来高空间分辨率的多通道卫星逐渐发射升空,这些高分辨率的卫星遥感数据将对大尺度上植被生理生化指标反演提供可能。该研究从2014年-2016年在内蒙古阴山北麓武川县进行了三年不同氮水平的马铃薯田间试验,借助地面马铃薯冠层高光谱实测数据,模拟近几年发射的具有红边波段的多通道卫星WorldView-2和VENμS不同宽度波段,并构建多种光谱指数,建立光谱指数与马铃薯地上部植株氮素浓度的估测模型,进行马铃薯关键生育期冠层氮素营养的实时监测。结果表明,波段宽度和波段位置的选择决定着光谱指数对氮素浓度的响应程度,基于红边波段的光谱指数具有更高的灵敏性。生育时期显著影响光谱指数对马铃薯地上部氮素浓度的估测能力,苗期土壤背景对光谱反射率具有显著干扰,马铃薯块茎形成期后植株氮素浓度的预测效果最佳。基于WorldView-2和VENμS卫星红光、红边和近红外特定波段构成的融合光谱指数NDRE/NDVI相对其他指数来说在马铃薯植株氮素浓度估测上更具优势,与不同生育时期马铃薯植株氮素浓度都具有较高的相关性,相关系数r在0.63~0.81之间。其中,生殖生长期基于VENμS卫星红光、红边和近红外通道构成的融合光谱指数VENμS-NDRE/NDVI与马铃薯植株氮素浓度相关性最高(r=0.81),模型验证结果的决定系数为0.56,且验证误差较小,RMSE和RE%分别为0.38%,10.45%,模型估测值与实测值的验证斜率最接近1,为0.82;WorldView-2-NDRE/NDVI与马铃薯植株氮素浓度也具有较高的相关性(r=0.74),模型验证结果的决定系数为0.49,验证误差RMSE和RE%分别为0.41%和11.12%,模型估测值与实测值的验证斜率为0.78。多通道卫星模拟的结果证明,基于红边宽波段的融合光谱指数能用来进行马铃薯植株氮浓度的监测。  相似文献   

17.
基于CASI高光谱数据的作物叶面积指数估算   总被引:3,自引:0,他引:3  
叶面积指数(LAI)的快速估算对于及时了解作物长势、病虫害监测以及产量评估具有重要意义。利用2012年7月7日在黑河流域张掖市获取的CASI高光谱数据,精确提取出了不同作物的光谱反射率,同时结合地面实测数据,对比分析了宽波段和“红边”植被指数在估算作物LAI方面的潜力,在此基础上,基于波段组合算法,筛选出作物LAI估算的敏感波段,并构建了两个新型光谱指数NDSI和RSI,最后对研究区域作物LAI的空间分布进行了分析。结果表明,在植被覆盖度较低的情况下,宽波段植被指数NDVI对LAI具有较好的估算效果,模型的精度R2与RMSE分别为0.52,0.45(p<0.01);对于“红边”植被指数,由于CIred edge充分考虑了不同的作物类型,其对LAI的估算精度与NDVI一致;利用波段组合算法构建的光谱指数NDSI(569.00, 654.80)和RSI(597.6, 654.80)对LAI估算的效果要优于NDVI与CIred edge,其中,NDSI(569.00, 654.80)主要利用了植被光谱“绿峰”和“红谷”附近的波段,模型估算的精度R2可达0.77(p<0.000 1);根据LAI与NDSI(569.00, 654.80)之间的函数关系,绘制作物LAI的空间分布图,经分析,研究区域的西北部LAI值偏低,需增施肥料。研究结果,可为农业管理部门及时掌握作物长势信息、制定施肥策略提供技术支持。  相似文献   

18.
利用遥感光谱无损、快速分析出氮肥的施用时期和施用模式,对于保护环境、产量及氮肥利用率的提高具有重要意义。利用FieldSpec 4 Wide-Res Field Spectrum radiometer便携式地物光谱仪,测定了不同氮水平下小麦冠层和叶片两种模式光谱特征及红边参数变化规律;提出一个新指数--归一化差异最大指数(normalized difference maximum index,NDMI),并分析其与叶面积指数(leaf area index,LAI)、SPAD(soil and plant analyzer development)值、MDA(malondialdehyde)含量、旗叶氮含量和产量的相关性。结果表明,小麦叶片原始光谱在开花后26 d起800~1 330 nm区间的光谱反射率以N3(1/3底施+1/3冬前追肥+1/3拔节期追肥)处理为最高,N1处理(1/2底施+1/2冬前追肥)次之。主要原因是由冬前和拔节期两个时期均施三分之一氮肥,增强了叶片光合能力。小麦冠层原始光谱,在400~700 nm波段,N2(1/2底施+1/2拔节期追肥)处理最低;在760~1 368 nm波段区间,由于群体结构不同,在开花期至灌浆中期N1处理的光谱反射率最高,N3处理次之;N3处理的冠层光谱反射率在开花后26和33 d最高。建议用400~700和760~1 368 nm波段的冠层原始光谱数据,分别来辨别小麦旗叶含氮量的高低及施肥模式。叶片模式下一阶微分光谱在500~750 nm区间出现两个“峰”,通过峰的位置偏移程度和偏移时期来估测施氮的模式。在670~740 nm区间冠层一阶微分光谱值在开花期最高,开花后10 d的一阶微分光谱值最低。在开花期至开花后10 d N1处理的一阶微分光谱值高于N3处理;灌浆中期至开花后33 d N3处理的一阶微分光谱值高于N1处理。可以通过一阶微分最大值来推测小麦所处的生育期和施肥的方式及施肥时期。在开花期至灌浆中期,冠层反射率一阶导数最大值(FD-Max)N1处理最高,N3处理次之;在开花后26~33 d,N3处理的群体结构较其他处理密,导致其一阶导数最大值一直最高。四个处理叶片一阶导数最大值变化趋势不如冠层显著。四个处理的反射率一阶导数最大值对应的红边位置(REPFD-Max)中,N1和N3冠层REPFD-Max在灌浆中期后偏移显著;在开花后26~33 d,N3处理的群体上层结构密,叶片宽且厚,冬前追施氮肥影响REPFD-Max偏移程度。基于NDVI基础上,筛选出一个新指数--归一化差异最大指数。冠层归一化差异最大指数(CNDMI)与农化参数的相关系数高于叶片归一化差异最大指数(LNDMI),且CNDMI与产量的相关性比LNDMI显著。冠层归一化差异最大指数与旗叶氮含量、SPAD值和MDA含量有着显著的相关性,相关系数r分别为0.812 88,0.928 21和-0.722 17。综上所述,借助光谱数据和红边参数可以推测小麦含氮量的高低,所处的生育期和施氮肥的模式,进而为田间施肥管理及施肥诊断提供依据。CNDMI与小麦产量有着更好的相关性,符合我国资源卫星的光谱波段范围,具有可实际操作性。  相似文献   

19.
应用主动作物冠层传感器对马铃薯氮素营养诊断   总被引:4,自引:0,他引:4  
氮肥的充足供应是马铃薯高产的重要条件,然而氮肥的过量投入会导致资源浪费、环境污染,因此,氮素精准管理势在必行,而实时的氮素营养诊断是实现马铃薯合理氮素养分管理的前提。本研究通过在内蒙古武川县和林西县进行的田间试验,采用主动作物冠层传感器GreenSeeker对马铃薯各生育时期进行实时监测,建立了传感器读数NDVI值与地上部植株氮浓度以及整株吸氮量的关系。研究表明,由于受到土壤背景的影响,苗期NDVI值与马铃薯氮营养指标相关性较差。苗期以后,马铃薯在封垄前NDVI值与植株吸氮量呈显著的指数关系(R2=0.665),封垄后NDVI值与地上部植株氮浓度呈显著的线性关系(R2=0.699),且不受地域以及生育时期的影响。结果表明,主动作物冠层传感器GreenSeeker能够用于马铃薯氮素营养诊断,该结果为进一步建立应用主动作物冠层传感器的氮肥管理提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号