首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 333 毫秒
1.
阴影是遥感影像中普遍存在的干扰因素,如何有效去除阴影已成为共识,寻找一个有效的阴影检测指标是实现影像阴影去除的基础工作。以Landsat TM,ALOS AVNIR-2,CBERS-02B CCD及HJ-1 CCD影像为试验数据,立足于进一步增大阴影区植被与明亮区植被、水体间的差异,实现影像阴影的有效检测,构建了一个新的植被指数——阴影植被指数SVI,该指数既可保证明亮区植被、阴影区植被、水体区在近红外波段的绝对差异,又能对NDVI进行放大,消除可能存在的混淆现象,改变NDVI直方图的“偏态”现象,使植被指数值更接近于正态分布,更符合地面实际;该指数适用于近红外波段辐射特征差异较大的地物。采用精度评估法验证SVI对明亮区植被、阴影区植被、水体区三类地物的识别效果,结果显示,四幅影像总分类精度依次高达98.89%,100%,97.78%,97.78%,总Kappa系数依次为0.983 3,1,0.966 7,0.966 7, 说明SVI对明亮区植被、阴影区植被及水体区具有极好的检测效果;对子影像、SVI与NDVI的统计指标对比亦说明,SVI可靠、有效,可以将其应用于影像阴影去除。  相似文献   

2.
为探究利用高分六号卫星宽幅(GF-6 WFV)数据识别火烧迹地的适宜光谱波段和指数,选取2019年发生在我国内蒙古大兴安岭林区的三处雷击火形成的火烧迹地作为研究区,结合GF-6 WFV波段组成,选取归一化植被指数(normalized difference vegetation index, NDVI)、全球环境监测指数(global environment monitoring index, GEMI)、增强植被指数(enhanced vegetation index, EVI)、燃烧面积指数(burned area index, BAI)、土壤调节植被指数(soil-adjusted vegetation index, SAVI)、改进型土壤调节植被指数(modified soil-adjusted vegetation index, MSAVI)和归一化差异水体指数(normalized difference water index, NDWI)等7个光谱指数及地面叶绿素指数(MERIS terrestrial chlorophyll index, MTCI)、归一化差值红边指数(normalized difference red edge index 1, NDRE1)、改进的叶绿素吸收指数(modified chlorophyll absorption ratio index 2, MCARI2)和改进的归一化土壤指数(modified normalized difference soil index, MNDSI)等4个改进指数,基于同期影像和前后两期影像进行火烧迹地和其他典型类别的区分度计算,并利用上述11个指数及指数差值进行火烧迹地的识别,定量评价了GF-6 WFV各波段、所选光谱指数及改进指数识别火烧迹地的能力。结果表明:(1)GF-6 WFV的近红外波段和新增的两个红边波段区分度较高,反映火烧迹地特征的能力较强。(2)在区分火烧迹地和火烧前正常植被上,NDVI, GEMI, EVI, BAI, SAVI, MSAVI和NDWI 7个光谱指数等的区分能力较强,4个改进指数中,NDRE1和MCARI2的区分能力较好,MNDSI和MTCI的区分效果较差。(3)在区分同期影像火烧迹地和其余典型类别上,BAI, NDVI, MCARI2和NDWI区分效果较优,其次为NDRE1, GEMI, EVI, SAVI和MSAVI,而MNDSI, MTCI的区分能力较差。(4)在利用所选指数和指数差值识别火烧迹地中,GEMI, EVI, BAI, SAVI和MSAVI的识别精度均较优,其次是MCARI2, NDVI和NDWI,做差后提取精度显著上升,Kappa系数均提升到0.80以上,MTCI, MNDSI和NDRE1提取效果较差。综合比较,BAI和GEMI识别效果最好,NDVI, EVI, SAVI, MSAVI, NDWI和MCARI2的识别能力中等,而MNDSI, NDRE1和MTCI等3个改进指数识别火烧迹地的能力较差。  相似文献   

3.
一种基于无人机高光谱数据的植被盖度估算新方法   总被引:2,自引:0,他引:2  
从分析对植被覆盖度(FVC)敏感的光谱特性入手,使用Avafield-3光谱仪(测量范围300~2 500 nm),利用人工草坪控制植被覆盖度的方式研究混合光谱与植被覆盖度的关系,通过实验发现红边区间(680~760 nm)对植被覆盖度最为敏感,而红边区间光谱的一阶导数与植被覆盖度的相关性最高(>0.98),且有较强的稳定性,因此选择红边斜率k作为估算植被盖度的参数。参考混合光谱分解法反演植被覆盖度的经典模型--即以NDVI(normalized difference vegetation index)为参数的植被覆盖度反演模型,以红边斜率代替NDVI构建了2个反演植被覆盖度FVC的新的红边斜率模型,该模型是对经典模型的进一步改进。为验证模型精度,以研究区内无人机(UVA)的高光谱数据和研究区实际测量的植被覆盖度数据进行验证:对高光谱数据计算每个像元680~760 nm之间的斜率,利用PPI(pixel purity index)提取纯像元,计算纯植被像元光谱斜率的最大值和纯土壤像元光谱斜率最小值,利用新的红边斜率FVC模型求取植被覆盖度;实测数据采用照相方法,经过几何校正、监督分类后统计植被覆盖度,结果表明:通过实测数据与无人机高光谱数据获取的植被覆盖数据进行验证,新构建的基于红边斜率的两个植被覆盖度模型的精度(R2分别达0.893 3和0.892 7)都略高于以NDVI为参数的模型(R2分别达0.839 9和0.829 9)。提出使用红边斜率计算植被覆盖度的模型,具有较明确的生物物理意义,具有较高的应用潜力和推广价值。  相似文献   

4.
光谱特征是地物的固有属性,分析地物光谱不仅有助于提高地物识别精度,也是定量遥感研究的基础。然而受限于尺度效应,近地空间采集的光谱与遥感像元尺度的光谱往往差异较大。因此,在遥感像元尺度上揭示湿地典型景观地类的光谱特征,将有助于大尺度湿地遥感分类和植被参数反演精度的提高。以华北平原典型的草型湖泊湿地南阳湖为对象,基于EO-1 Hyperion星载成像高光谱数据,提取荷田、芦苇地、林地、水田、旱地、建筑用地、河道和湖泊鱼塘等8类湿地景观的反射率,并进行光谱一阶导数变换,同时计算多种高光谱植被指数,定量分析景观尺度上湿地地物的光谱特征。结果表明:(1)8种湿地景观地物反射率光谱差异明显,其中5种不同植被景观也存在差异。荷田反射率在全波段明显高于其他景观地类,荷田的绿波段反射峰和红波段吸收谷最明显。芦苇地与水田在可见光和红边区域具有相似的反射光谱特征,水田与旱地反射光谱曲线不同,且水田的绿峰明显高于旱地。(2)8种景观在蓝边、黄边及红边处的一阶导数光谱差异明显,尤以红边处最显著。荷田的红边斜率最大且红边位置明显蓝移(712 nm),说明其叶绿素含量高,健康状况最好。林地的红边斜率次之,但红边位置明显红移(722 nm)。(3)林地具有最大的植被指数,水体和建筑用地植被指数均较低,其他景观地类居中。芦苇地、水田、旱地和荷田在大多数与归一化植被指数(NDVI)相关的指数中差异不明显,仅在增强型植被指数(EVI)和红边叶绿素指数(Chlorophyll Index RedEdge 710)中存在较明显差异,说明这两个指数能够更有效地指示湿地植被类型之间绿度和覆盖度的差异。该研究对于草型湖泊湿地景观地物高精度分类及其植被参数的遥感反演具有借鉴意义。  相似文献   

5.
无人机多光谱遥感在玉米冠层叶绿素预测中的应用研究   总被引:6,自引:0,他引:6  
叶绿素含量是植物生长中的重要参数,与农作物产量密切相关。无人机遥感技术作为一种新的数据获取手段,在农业中已得到广泛应用。以玉米为目标作物,将具有不同光谱响应函数的两种轻小型多光谱传感器(MCA和Sequoia),同时搭载在六旋翼无人机上,获取不同氮肥水平下大田玉米花期的多光谱影像。利用无人机影像空间分辨率高的特点,在小区尺度上,分别计算了基于两种多光谱传感器的各26种植被指数,并将其与地面实测的叶绿素含量(SPAD)值进行回归分析,研究不同波段反射率对SPAD值的敏感性,利用不同多光谱传感器及植被指数预测SPAD值的精度及稳定性。结果表明,对于具有较宽波段的Sequoia,在550 nm(绿波段)、735 nm(红边波段)的反射率对SPAD值的变化较敏感,其中,550 nm与SPAD值的相关系数最大(R2=0.802 9)。而对于较窄波段的MCA,720 nm(红边波段)的反射率与SPAD值具有较高的相关性(R2=0.724 8),550 nm(绿波段)次之。此外,由于两传感器红波段的中心波长和波段宽度不同,660 nm(Sequoia)反射率与SPAD值的相关系数为0.778 6,而680 nm(MCA)反射率与SPAD值的相关性较小,仅为0.488 6。利用无人机多光谱遥感技术预测大田玉米的SPAD值精度较高,但对于不同的多光谱传感器而言,同一植被指数却表现出较大的差异,其中,红波段和近红外波段组合构造的植被指数RVI,NDVI,PVI和MSR差异较大,具有较宽波段的Sequoia传感器优于窄波段的MCA;此外,对于Sequoia相机,GNDVI与RENDVI预测SPAD值的精度较高,RMSE分别为3.699和3.691;对于MCA相机,RENDVI预测精度最高(RMSE=3.742),GNDVI预测精度低于RENDVI(RMSE=3.912);两传感器中MCARI/OSAVI预测SPAD值精度均较低,RMSE分别为7.389(Sequoia)和7.361(MCA)。在所有的植被指数中,利用绿波段和近红外波构造的植被指数(G类),以及用红边波段和近红外波段构造的植被指数(RE类),预测SPAD值精度更高,均高于红外和近红外波段构造的植被指数;利用更多波段(三个及以上)组合构造的复杂植被指数,并不能显著提高预测精度。就预测模型而言,MCARI1更适用于对数模型,可有效提高预测精度, 而其他植被指数变化不显著。研究还发现,在小区水平SPAD值的预测方面,除NDVI和TVI,Sequoia相机对于不同氮肥条件下植被覆盖度、阴影和裸露土壤等环境背景因素具有较强的抗干扰能力;而对于MCA相机来说,TVI,DVI,MSAVI2,RDVI和MSAVI对环境背景因素非常敏感,预测SPAD精度低;此外,去除环境背景因素并不总是能够提高SPAD值的预测精度。本研究对于利用无人机多光谱遥感技术进行高精度的叶绿素含量预测具有指导意义,对于精准农业的推广和应用具有一定的借鉴价值。  相似文献   

6.
冠层是植被进行生态过程的主要层次,森林冠层结构影响冠层生化组分的遥感反演,因此对其光谱特征的分析有助于提高冠层生化组分反演的精度。以长白山温带阔叶红松林为研究对象,利用Hyperion高光谱数据提取不同林冠反射率,运用连续统去除和光谱一阶微分法进行光谱变换,定量分析森林冠层的光谱特征。通过计算样方阔叶树种优势度(BFDI),以及一系列光谱指数(NIR,NDVI,EVI,NDNI,SPRI*NDVI和SPRI*EVI),探讨冠层结构组成对其光谱特征及光谱指数的影响。结果表明:(1)相比阔叶林冠层,针阔混交林、美人松林和樟子松林冠层光谱的红边有左移趋势,斜率明显下降,蓝边、黄边斜率特征也相应减弱,近红外波段反射率明显下降,可见光波段的归一化反射率有上升趋势,表明不同林冠,尤其针叶林与阔叶林林冠之间的光谱特征差异明显。(2)BFDI对冠层NIR反射率和三边斜率有明显的影响,与光谱指数显著相关(P<0.01),表明BFDI影响森林光谱指数。BFDI与NDVI,EVI,SPRI*EVI,NIR,SPRI*NDVI,NDNI的R2分别达到0.90,0.83,0.83,0.81,0.68,0.59,揭示了BFDI对于冠层绿度、叶面积指数、植被生产力以及冠层叶氮浓度等植被参数存在一定影响。研究表明,利用星载高光谱数据结合地面样方调查可以很好地阐明林冠结构组成对于光谱特征的影响,也对优化植被冠层生化组分和森林生态系统生产力的遥感反演具有借鉴意义。  相似文献   

7.
作物植被覆盖度的高光谱遥感估算模型   总被引:5,自引:1,他引:4  
通过大田试验,使用ASD光谱仪测量了油菜、玉米、水稻三种作物不同覆盖度水平下的冠层光谱,同时拍照获取植被图片并用计算机求算了植被覆盖度。利用三种作物光谱求算“红边”变量,并对波段两两组合求算归一化植被指数(NDVI),建立这些光谱变量与覆盖度之间的估算模型,得到适用于三种作物的最优估算模型和最佳的NDVI波段组合。另外,利用响应函数模拟了TM归一化植被指数,同植被覆盖度进行了相关分析,回归方程的R2达到0.80,并通过了预留数据的检验,为TM数据植被覆盖度估算进行了探索性的研究。  相似文献   

8.
基于CASI高光谱数据的作物叶面积指数估算   总被引:3,自引:0,他引:3  
叶面积指数(LAI)的快速估算对于及时了解作物长势、病虫害监测以及产量评估具有重要意义。利用2012年7月7日在黑河流域张掖市获取的CASI高光谱数据,精确提取出了不同作物的光谱反射率,同时结合地面实测数据,对比分析了宽波段和“红边”植被指数在估算作物LAI方面的潜力,在此基础上,基于波段组合算法,筛选出作物LAI估算的敏感波段,并构建了两个新型光谱指数NDSI和RSI,最后对研究区域作物LAI的空间分布进行了分析。结果表明,在植被覆盖度较低的情况下,宽波段植被指数NDVI对LAI具有较好的估算效果,模型的精度R2与RMSE分别为0.52,0.45(p<0.01);对于“红边”植被指数,由于CIred edge充分考虑了不同的作物类型,其对LAI的估算精度与NDVI一致;利用波段组合算法构建的光谱指数NDSI(569.00, 654.80)和RSI(597.6, 654.80)对LAI估算的效果要优于NDVI与CIred edge,其中,NDSI(569.00, 654.80)主要利用了植被光谱“绿峰”和“红谷”附近的波段,模型估算的精度R2可达0.77(p<0.000 1);根据LAI与NDSI(569.00, 654.80)之间的函数关系,绘制作物LAI的空间分布图,经分析,研究区域的西北部LAI值偏低,需增施肥料。研究结果,可为农业管理部门及时掌握作物长势信息、制定施肥策略提供技术支持。  相似文献   

9.
基于高光谱影像的干旱区草地光谱特征分析   总被引:1,自引:0,他引:1  
基于石羊河流域金昌地区Hyperion高光谱影像,通过FLAASH大气校正,利用纯像元指数法提取草地波谱信息,并运用光谱一阶微分法和连续统去除法进行定量化处理。结果表明,相对于生长旺盛期的草地光谱特征,衰退期草地光谱红边左移,斜率降低,蓝边、黄边特征减弱,可见光波段反射值较高,近红外波段反射率较低;不同覆盖度草地的红边、绿峰、蓝光和红光吸收谷位置保持一致,可见光波段的光谱吸收特征(波段深度、宽度、面积、对称性)随覆盖度的增大呈有规律的变化,可作为提取或判定植被覆盖度的依据。  相似文献   

10.
为探究多特征融合方法在作物倒伏领域快速精准识别中的适用性,利用无人机获取多田块冠层尺度的不同倒伏率麦田多光谱数据,对原始倒伏图像进行图像拼接、辐射校正、几何校正等预处理,并利用重归一化差值植被指数和阴影指数分别剔除土壤和阴影背景,提取小麦倒伏DSM模型和植被指数分别与多光谱图像进行多特征图像主成分变换融合,筛选差异性较大的纹理特征,采用支持向量机(SVM)、人工神经网络(ANN)和最大似然法(MLC)监督分类模型对多光谱和DSM融合图像、多光谱和归一化植被指数(NDVI)融合图像、多光谱图像和纹理特征图像进行监督分类,并采用总体精度(OA)、 Kappa系数和提取误差综合评价各监督模型的分类性能和倒伏提取精度。分类结果表明:各监督分类方法在不同倒伏区域提取结果建模效果趋势一致,SVM和ANN整体提取精度高于MLC,在高倒伏区域,多光谱与NDVI融合图像的SVM监督模型(OA:92.63%, Kappa系数:0.85,提取误差:1.11%)提取效果最好;在中倒伏区域,多光谱与DSM融合图像的SVM监督模型(OA:90.35%, Kappa系数:0.79,提取误差:9.34%)提取效果最好...  相似文献   

11.
为了探究国产高分卫星遥感技术监测火干扰对植被生长影响的能力及其表征植被指数,选取2014年发生在四川省雅江县和冕宁县的两场森林火灾形成的火烧迹地作为研究区,利用火灾前后时序的高分一号宽幅(GF-1 WFV)数据,对不同受灾程度火烧迹地火灾前后的光谱特征变化进行分析,并以月为单位分析了不同受害程度植被火后两年内由GF-1 WFV数据生成的归一化植被指数(NDVI)、增强型植被指数(EVI)和全球环境监测植被指数(GEMI)等三种表征植被生长状态的植被指数的变化,结合研究区纬度、海拔和气候条件分析火后植被的年内恢复规律。结果表明:火烧造成植被色素和细胞结构破坏,使其不再表现出正常植被特有的光谱特征,在可见光区受害植被的反射率相比于正常植被偏高,且其值随受灾程度加重而升高;在近红外波段火干扰后的植被反射率降低,其值远低于正常植被的反射率值。NDVI,EVI和GEMI在表征植被恢复生长过程中存在高度相关性且对植被季节变化敏感,均能反映植被恢复的生长过程,具有描述火烧区植被恢复动态过程的能力;受灾植被恢复生长过程中的植被指数变化与正常植被年生长过程的植被指数变化趋势基本一致,同样存在生长季和非生长季;火烧区植被的NDVI,EVI和GEMI值相比正常植被对应植被指数值始终偏低,且植被受灾越严重,其植被指数值在同期中对应越低。  相似文献   

12.
反射光谱在近年来广泛应用于土壤属性的估算。作为一种有效估算土壤全磷含量的手段,反射光谱技术可以很大程度上减少传统化学测量方法所损耗的人力物力。以江苏滨海土壤为研究对象,在30个采样点采集了共147个土样,测量土壤样品光谱反射率及全磷含量。利用原始光谱反射率数据及6种不同的光谱变换结果,通过随机抽样(RS)、KS、SPXY三种样本集划分方法,基于偏最小二乘回归(PLSR)和支持向量机(SVM)方法分别建立土壤全磷含量的估算模型,对比分析了三种样本集划分方法对估算结果精度的影响。结果表明:(1)以原始光谱反射率为数据,PLSR模型,RS方法在多数情况下可以获得较为稳定的模型精度,明显优于KS和SPXY方法;在SVM模型中,采用SPXY方法获得的模型结果最优,KS次之,RS结果最差。(2)不同的样本集划分方法所合适的光谱变换方法不同,对于三种划分样本集方法,PLSR和SVM对应的最优光谱变换分别是对数的倒数和一阶导数(KS方法),原始光谱和一阶导数(RS方法),一阶导数和多元散射校正(SPXY方法)。其中采用KS方法划分样本集,PLSR和SVM均能获得最佳的预测结果。并非所有光谱变换方法都可以提高模型精度,部分光谱变换后PLSR模型预测精度显著降低;(3)在所有的样本集划分方法中,SVM的建模效果优于PLSR,采用RS方法划分样本集,PLSR的预测精度高于SVM,而采用KS和SPXY方法划分样本集,SVM的预测精度整体高于PLSR。综上所述,本研究区域估算土壤全磷含量的最佳模型是基于KS样本集划分方法和一阶导数光谱变换建立的SVM模型,此时拟合优度(R2p)为0.82。结果表明反射光谱可以对滨海地区的土壤全磷含量进行有效预测,对土壤磷元素的高效快速反演具有一定的指导意义。  相似文献   

13.
城市地表水是城市生态环境的重要组成部分,地表水环境高光谱遥感是高光谱遥感的重要应用方向,水体提取是地表水环境高光谱遥感的第一步,其主要任务是从高光谱遥感数据中提取地表水水体轮廓。基于光谱指数的水体提取方法充分利用光谱信息,计算简单,实现容易,提取效果优异。归一化植被指数(NDVI)、归一化水体指数(NDWI)、高光谱差异化水体指数(HDWI)和基于指数的水体指数(IWI)等光谱指数已经广泛应用于湖泊、大江大河等开阔水体提取。近些年来,随着成像光谱技术的发展,高光谱遥感数据的获取能力也突飞猛进,空间分辨率和光谱分辨率不断提高。与江河湖基本在流域内沿地形分布不同,城市地表水一般细小,纵横交错,形成河网。在高光谱遥感数据用于城市体表水提取时,其面临的图像空间分辨率、地物类型和地物复杂等,与江河湖水体提取有很大不同。因此,需要对这些常用的光谱指数在城市地表水提取中的适宜性进行评价。以此做为出发点和目标,以河网密布的江南水乡中国浙江省嘉兴市为研究对象,以应用型航空成像光谱仪(Airborne imaging spectrometer for applications, AISA)获取的高空间分辨率机载高光谱遥感数据为数据源,通过Youden指数确定最佳阈值,将总体分类精度、错分误差、漏分误差、Kappa系数作为衡量指标,分析评价了NDVI,NDWI,HDWI和IWI 4种光谱指数在城市河网提取中的适宜性。结果表明,阴影与水体光谱变化趋势类似,是造成水体提取过程中高错分误差的主要因素。四种指数都可以准确抑制落在植被中的阴影,但无法有效抑制落在建筑物中的阴影。HDWI虽然可以在一定程度上抑制建筑物中的阴影,但是无法有效地抑制亮建筑物背景。通过对不同类型水体和阴影(笼罩下地物)光谱的进一步分析,虽然水体和阴影光谱曲线变化趋势相似,均在560~600 nm附近存在波峰,但是水体和阴影波峰高度存在差异,水体波峰值较大而阴影波峰值较低。因此,通过充分挖掘水体和阴影在560~600 nm处光谱反射信息,有望进一步抑制建筑物阴影,提高城市河网水体提取精度。  相似文献   

14.
叶面积指数(LAI)是目前最常用的农业生态监测指标,可以为农作物的病虫害监测、作物长势监测、碳循环、生物量估算及作物估产提供依据。植被指数(VI)是卫星LAI产品生产的重要数据源,但不同VIs对植被LAI的响应特征具有一定的差异性。以江西省水稻为例,基于实测光谱提取了水稻实测VIs,结合实测LAI,讨论了归一化植被指数(NDVI)、增强型植被指数(EVI)、土壤调节植被指数(SAVI)和修正的土壤调节植被指数(MSAVI)四种常见VIs对LAI的响应特征,并与MODIS LAI备用算法的计算结果进行了对比分析,研究了不同VIs用于LAI产品反演的可行性及存在的问题。通过对不同实测VIs-LAI模型精度的评估,分析其应用于LAI反演的适应性,结果显示EVI,SAVI和MSAVI比NDVI有更好的适应性,其中EVI效果最优。此外,通过对比MODIS LAI备用算法查找表,发现针对MODIS LAI备用算法中草地与谷物作物这一地表覆盖大类,在LAI>4时,NDVI出现饱和;而实测水稻作物的NDVI在LAI>2时开始出现饱和;且当NDVI相同时,查找表LAI远大于实测LAI,MODIS备用算法中使用的地表覆盖产品分类过粗可能是造成这一结果的主要原因。因此MODIS LAI备用算法在该区域水稻LAI监测中可能产生较大误差,有必要改用其他VIs优化该备用算法。通过对比分析四种VIs模型对LAI的预测误差,发现EVI,SAVI和MSAVI精度明显优于NDVI,基于EVI的模型平均预测误差仅为MODIS LAI备用算法的1/6,基于实测NDVI反演算法的1/2,因此设计基于EVI的LAI算法对LAI的反演精度有一定的提升空间。  相似文献   

15.
植被指数是表征植被覆盖,生长状况简单有效的度量参数。本文以城市绿化主要植被大叶黄杨为例,研究叶片滞尘对植被指数的影响,并构建植被指数修正模型对植被指数进行修正优化,提高植被指数的测量精度。研究选取北京城区为研究区,采集20个采样点的200个叶片样本,利用电子分析天平、ASD高光谱辐射仪及Win FOLIA叶面积仪,分别获取叶片尘埃量、光谱信息、叶面积等数据。通过对比分析样本叶片除尘前、后光谱特征及NDVI、NDWI、NDNI、NDII、CAI、PRI植被指数分布特征差异,结合单位滞尘量与光谱数据,构建植被指数修正模型,并对修正模型进行精度检验。结果表明:大叶黄杨叶片在除尘前与除尘后的光谱曲线均表现出典型的植被光谱特征,且蓝边、红边均出现在520和705 nm处,然而在350~700,750~1 350,1 500~1 850,1 900~2 100 nm波段范围内,滞尘对叶片光谱反射率影响显著,同时对植被指数也有较大影响;通过对滞尘量定量的研究分析发现,当尘埃质量增加时, NDVI和PRI植被指数与尘埃量的线性关系变弱,而NDWI,NDII,CAI植被指数与尘埃量依然保持明显的线性关系。修正模型NDVI,NDII,CAI,PRI精度验证决定系数(R2)分别为0.547,0.430,0.653,0.960,RMSE分别为0.035,0.020,0.112,0.009。研究结果表明对以后利用植被指数进行大面积植被反演、评估时,根据滞尘量影响进行修正优化,提高反演精度有一定参考意义。  相似文献   

16.
基于Sentinel-2A影像的玉米冠层叶绿素含量估算   总被引:5,自引:0,他引:5  
农作物叶片中的叶绿素通过吸收光能参与光合作用产生化学能,及时、准确地估算叶绿素含量对于农作物长势、养分含量监测、品质评价和产量估算具有重要意义。Sentinel-2卫星的重访周期为5 d,空间分辨率为10 m,具有13个光谱波段,其中包括三个波宽仅为15 nm对叶绿素含量变化敏感的红边波段,是叶绿素含量估算的理想数据源。植被指数是基于农作物在不同波段的反射特性,通过不同波段组合方式刻画长势和叶绿素含量的差异,可用于大区域范围内的玉米冠层叶绿素含量快速、精确估算。以Sentinel-2A影像为数据源,开展基于多种植被指数的玉米冠层叶绿素含量估算方法研究。课题组于2016年8月6-11日在河北省保定市(115°29′-116°14′E,39°5′-39°35′N)进行玉米冠层叶绿素含量的实地测量,并在每个采样位置上采用中绘i80 智能RTK(real-time kinematic)测量系统进行定位。Sentinel-2A影像预处理工作包括几何校正、辐射定标和大气校正,其中大气校正使用Sen2Cor模型和SNAP模型。首先,基于预处理后的Sentinel-2A遥感影像,分别计算CIgreen(green chlorophyll index), CIred-edge(red-edge chlorophyll index), DVI(difference vegetation index), LCI(leaf chlorophyll index), MTCI(MERIS terrestrial chlorophyll index), NAVI(normalized area vegetation index), NDRE(normalized difference red-edge), NDVI(normalized difference vegetation index), RVI(ratio vegetation index), SIPI(structure insensitive pigment index)植被指数。然后,建立样方位置上实测叶绿素含量与各植被指数的统计关系,从而构建玉米冠层叶绿素含量估算模型,并以野外实测玉米冠层叶绿素含量为依据,对基于各植被指数的估算结果进行精度评价。最后,利用筛选出的最优叶绿素含量估算模型,估算研究区内的玉米冠层叶绿素含量。研究的目标为:(1)通过比较分析,构建合适的玉米冠层叶绿素含量估算模型,估算精度以决定系数R2、均方根误差RMSE以及相对误差RE作为评价指标;(2)确定最优波段组合方案:在红边波段中选择与可见光、近红外波段组合效果更优的波段组合方案;(3)确定参与植被指数计算的红边波段的最优数量。精度评价结果表明:(1)选用的植被指数与玉米冠层叶绿素含量呈多项式拟合关系,其中使用红边波段计算的植被指数的估算结果明显优于未使用红边波段的估算结果;红边波段引入后明显提高了可见光、近红外波段对叶绿素含量的拟合的精度,CIgreen(560, 705)指数比CIgreen(560, 842)的回归模型R2提高0.516,红边波段参与计算的DVI相对于RVI来说,估算结果更稳定。(2)对于不同的植被指数,参与运算的Sentinel-2A影像的两个红边波段,估算精度的提高程度不同。对于可见光波段参与计算的植被指数来说,在红边波段1(中心波长为705 nm)的估算精度较高,如LCI,CIgreen,DVI和RVI等;对于近红外波段参与计算的植被指数来说,在红边波段2(中心波长为740 nm)的估算精度较高,如CIred-edge,NDRE和NAVI等。(3)对于Sentinel-2A影像来说,两个红边波段共同参与叶绿素含量估算时能取得最高的的估算精度。选用的植被指数中,MTCI(665, 705, 740)指数与玉米冠层叶绿素含量估算精度最高,回归模型拟合精度R2为0.803,模型验证R2为0.665,RMSE为3.185,相对误差RE为4.819%。MTCI(665, 705, 740)指数计算中使用了两个红边波段,突出红边波段反射率差值变化,与玉米冠层叶绿素含量表现出很好的相关性。最后,利用优选出的基于MTCI指数的叶绿素含量估算模型,对研究区范围内的叶绿素含量进行估算并完成空间制图。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号