首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 416 毫秒
1.
The magnetic structure and transport properties of partially disordered crystals of two-dimensional manganites La2?2x Sr1+2x Mn2O7 (x = 0.3, 0.4) are studied over a wide range of temperatures. The crystals are transformed into an atomically disordered state under irradiation with fast neutrons at a dose of 2 × 1019 cm?2. The average concentration of substitutional defects in the crystal is ≈4%. It is found that substitutional defects are responsible for the transition of these manganites from the ferromagnetic metal state to the insulator state with a spin glass structure. The results obtained are discussed in terms of the ratio between the kinetic energy of charge carriers and the exchange energy of localized spins.  相似文献   

2.
The effect of a magnetic field on the dielectric properties of Tb0.95Bi0.05MnO3+δ single crystals has been analyzed. It has been shown that the state of the crystal for temperatures of 5–440 K is inhomogeneous and restricted domains of polar and spin correlations are exhibited in it. A phase transition in which the inhomogeneous state of the crystal changes substantially has been observed at a temperature of T ? 180 and 225 K (in the absence and presence of a magnetic field, respectively). The high-temperature phase contains large dielectric domains with a high dielectric constant (ε ~ 105) and thin conducting layers at the boundaries of these domains. The magnetic field significantly affects the state of both low-and high-temperature phases of the crystal, shifting the temperature of the phase transition between them, and induces an additional phase transition at T ? 441 K.  相似文献   

3.
The phase transformations occurring in the Ni70Mo10B20 alloy in the course of heating above the glass transition temperature are investigated using x-ray diffraction, transmission electron microscopy, high-resolution electron microscopy, and differential scanning calorimetry. It is shown that annealing of the alloy above the glass transition temperature leads to segregation of the amorphous phase into regions enriched with and depleted in molybdenum and/or boron. An increase in the temperature or time of annealing is accompanied by primary crystallization in regions of each type. Crystallization of the regions enriched with molybdenum results in the formation of face-centered cubic crystals of a molybdenum solid solution in nickel (phase 2). Nickel boride crystallizes in the regions enriched with boron. The face-centered cubic phase (phase 1), which is similar to pure nickel, crystallizes in the regions depleted in molybdenum and boron. Nanocrystals of phase 1 are free of defects. Nanocrystals of phase 2 with larger sizes contain a great number of defects.  相似文献   

4.
The process of homogeneous crystal nucleation has been considered in a model liquid, where the interparticle interaction is described by a short-range spherical oscillatory potential. Mechanisms of initiating structural ordering in the liquid at various supercooling levels, including those corresponding to an amorphous state, have been determined. The sizes and shapes of formed crystal grains have been estimated statistically. The results indicate that the mechanism of nucleation occurs throughout the entire considered temperature range. The crystallization of the system at low supercooling levels occurs through a mononuclear scenario. A high concentration of crystal nuclei formed at high supercooling levels (i.e., at temperatures comparable to and below the glass transition temperature Tg) creates the semblance of the presence of branched structures, which is sometimes erroneously interpreted as a signature of phase separation. The temperature dependence of the maximum concentration of crystal grains demonstrates two regimes the transition between which occurs at a temperature comparable to the glass transition temperature Tg.  相似文献   

5.
The effect of an external magnetic field with a strength up to 140 kOe on the phase transitions in manganese arsenide single crystals has been investigated. The existence of unstable magnetic and crystal structures at temperatures above the Curie temperature T C = 308 K has been established. The displacements of manganese and arsenic atoms during the magnetostructural phase transition and the shift in the temperature of the first-order magnetostructural phase transition in a magnetic field have been determined. It has been shown that the magnetocaloric effect in a magnetic field of 140 kOe near the Curie temperature T C is equal to ??T ?? 13 K. A model of the superparamagnetic state in MnAs above the temperature T C has been proposed using the data on the magnetic properties and structural transformation in the region of the first-order magnetostructural phase transition. It has been demonstrated that, at temperatures close to T C, apart from the contribution to the change in the entropy from the change in the magnetization there is a significant contribution from the transformation of the crystal lattice due to the magnetostructural phase transition.  相似文献   

6.
This paper reports on the first measurement of the dielectric permittivity and heat capacity of a KDP crystal doped by Chicago Sky Blue organic dye within a temperature interval including the ferroelectric phase transition at T c =122 K. Similar measurements were made on a pure KDP crystal under the same conditions for the sake of comparison. The heat capacities of the pure and doped crystals were shown to differ substantially within an interval 1 K wide in the vicinity of T c , where an anomaly in the heat capacity of the doped crystal was observed to wash out without producing any change in the temperature position of its maximum. The doping reduces the permittivity in the polar phase markedly. The observed effects are associated with the influence of nonisomorphic defects on the ferroelectric phase transition in a piezoelectric crystal.  相似文献   

7.
The structural changes induced by a 9-GPa pressure in Eu2(MoO4)3 single crystals at room temperature have been studied using x-ray diffraction. It is established that a structural phase transition from the initial tetragonal phase to the new high-pressure tetragonal phase occurs rather than solid-phase amorphization that was observed previously in polycrystalline samples. The samples in the observed transition remain single-crystalline despite a significant difference (ΔV ~ 18%) between the specific volumes of the initial and final phases. It is shown that the transition from the initial state to the high-pressure phase occurs via the formation of broad transition zones featuring a continuous and smooth change of the crystal lattice parameters.  相似文献   

8.
We have investigated the spin dynamics of a distorted perovskite Eu0.6Sr0.4MnO3 by means of Mössbauer spectroscopy. Below 70 K the exchange interaction grows gradually, and below 42 K the spins turn into a cluster glass state. The magnetic field-induced insulator-to-metal (IM) transition at low temperature is a transition from cluster glass to ferromagnet. The induced metallic phase seems to be still in non-uniform electronic state. On the other hand, at 80 K, just above T c of the induced ferromagnet, a metamagnetic transition was observed.  相似文献   

9.
The structural state of a bulk Zn0.95Fe0.05Se cubic crystal grown by the chemical transport method from the gas phase has been investigated using thermal neutron diffraction at room temperature. It has been found that the measured neutron diffraction patterns of the crystal, in addition to structural Bragg peaks, contain a clearly identified system of superstructure reflections with the wave vector k = (1/3 1/3 1/3)2π/a (where a is the parameter of the cubic unit cell), which is interpreted as a clear evidence of the incipient transition state preceding the concentration phase transformation fcc ? hcp. It has been shown that the resulting structural state includes an inhomogeneous microstrain field with the possible appearance of long-wavelength modulations based on the initial sphalerite structure.  相似文献   

10.
It is shown that a rotation ? and a deformation κ of the optical indicatrix appear during the transverse magnetic field-induced phase transition in hematite. Analytic expressions for ? and κ are deduced from the magnetization-dependent electromagnetic energy in the crystal. It is shown that during the phase transition, induced by increasing the temperature, the electromagnetic energy in the crystal. It is shown that during the phase transition, induced by increasing the temperature, the antiferromagnetic vector L = M1 - M2 is rotating from the three-fold C3 axis toward the basal plane, which implies that the main axis of the optical indicatrix is not aligned in a general case with the magnetic field or the crystallographic axis although the magnetic moment (M1 + M2) is always parallel to the field. The linear magnetic birefringence is very sensitive to the magnetic phase in hematite, as described in previous experimental work, but the present analysis shows that a direct determination of the transverse field-induced phase transition can be obtained in hematite, by means of a magnetooptical method, only when large and non-uniform rotation (up to ninety degrees) and variation of the shape of the indicatrix are taken into account.  相似文献   

11.
The effect of high pressure up to 65 GPa on the crystal structure and optical absorption spectra of NdFeO3 orthoferrite single crystals is studied in diamond anvil cells. At P~37.5 GPa, an electronic transition at which the optical absorption edge jumps from ~2.2 to ~0.75 eV is observed. The equation of state V(P) is studied on the basis of the X-ray diffraction data obtained under pressure. This study reveals a first-order structural phase transition at P~37 GPa with a jump of ~4% in the unit cell volume. It is shown that the phase transition observed in rare-earth orthoferrites at 30–40 GPa is a transition of the insulator-to-semiconductor type.  相似文献   

12.
The molecular crystal (KBr)0.47 (KCN)0.53 has been investigated by elastic neutron diffraction at the transition from the paraelastic to the orientational glass state. The freezing temperature is characterized by the onset of a momentum transfer dependent broadening of the diffraction lines indicating the transition from a crystalline to an amorphous state.  相似文献   

13.
Investigations of the magnetic state of a surface layer ~200 nm thick and of the bulk in macroscopic ferrite crystals of the type Ba-M (BaFe12O19) are performed in the phase transition region around the Curie temperature (T c). The method of simultaneous gamma, x-ray, and electron Mössbauer spectroscopy, which made it possible to compare directly the phase states of the surface and bulk of the sample, is used for the measurements. It is observed experimentally that in BaFe12O19 the transition of a surface layer ~200 nm thick to the paramagnetic state occurs at temperatures below T c. It is established that the transition temperature T c(L) of a thin layer localized at depth L from the surface of the crystal increases with distance from the surface and reaches the value T c at the lower boundary of the “critical” surface layer. Therefore, near T c a nonuniform state in which the crystal is magnetically ordered in the bulk but disordered at the surface is observed. A phase diagram of the states of the surface and of the bulk of macroscopic magnets near the Curie (or Néel) point is proposed on the basis of all the experimental results obtained in the present work as well as previously published results.  相似文献   

14.
The crystal structure and magnetic and elastic properties of the system LaMnO3+λ are investigated for various concentrations of oxygen. Upon an increase in the oxygen concentration, the orbital-ordered phase is transformed into an orbital-disordered phase via a two-phase crystal-structure state in the interval 0.04<λ<0.06. The transition is accompanied by a jumplike increase in the Curie temperature and spontaneous magnetization. An analysis of the magnetic properties in weak fields and of the temperature dependence of the Young modulus reveals the properties typical of the orbital-ordered antiferromagnetic phase up to λ=0.08. It is proposed that the two-phase state is associated with the martensite type of the orbital order-disorder phase transformation. The system La1?x Srx(Mn1 ?x/2Nb x/2)O3 in which all manganese ions are in the trivalent state exhibits a sequence of antiferromagnetic-ferromagnetic (x>0.2) and ferromagnetic-spin glass (x>0.4) transitions. In both systems, the orbital-disordered phases are ferromagnetic, indicating the crucial role of orbital ordering in the formation of magnetic properties.  相似文献   

15.
The temperature dependence of the parameters of the hyperfine interaction in the surface layers and in the bulk of macroscopic crystals of hexagonal ferrites of the type Sr-M (SrFe12O19) is investigated by the method of simultaneous gamma-, x-ray, and electron Mössbauer spectroscopy. It is shown experimentally that the transition of an ≈ 200 nm thick surface layer of macroscopic ferromagnets to the paramagnetic state occurs at a temperature 3° below the Curie point (T c) for the bulk of the crystal. It was established that the transition temperatureT c(L) of a thin layer localized at a depthL from the surface of the crystal increases away from the surface and reaches the valueT c at the lower (away from the surface) boundary of the so-called “critical” surface layer. A nonuniform state in which the bulk region of the crystal is magnetically ordered while the surface region is disordered is observed nearT N.  相似文献   

16.
The phonon spectra, Born effective charges, and dielectric constants ε for the □AlF3, □GaF3, and □InF3 crystals (where □ is a vacancy) have been calculated in terms of the generalized Gordon-Kim method. The calculated spectra of lattice vibrations contain no imaginary vibrational frequencies. This suggests the stability of the cubic phase of these compounds but contradicts the observable structural transition from cubic to rhombohedral phase. It is assumed that such a transition in the □AlF3, □GaF3, and □InF3 crystals is brought about by structural defects. The calculated spectrum of lattice vibrations of the “completely defective” crystal M□F3 (M = Al, Ga, and In) indicates a strong instability of the cubic phase. Within the mean crystal approximation, the cubic phase of M x M 1?x F3 crystals appears to be unstable at small x≤0.05.  相似文献   

17.
D03-type Fe70Al30 shows a transition from ferromagnetism to spin glass with anomalous slow spin dynamics below 170 K. Furthermore, it shows a structural transition from D03 to body-centered cubic (BCC) at 823 K. In this article, the relationship between the magnetic properties, thermal expansion coefficient (TEC), and crystal structure transition of D03-type Fe70Al30 is discussed. Below 170 K, TEC decreases with temperature, accompanied by a decrease in the Fe moments. In the ferromagnetic state between 170 K and the Curie temperature (TC), TEC increases gradually with temperature. Above TC, TEC increases rapidly. These temperature variations of TEC could be connected to the high-spin/low-spin transition and thermal spin fluctuations. During transition from D03 to disordered BCC at 823 K, TEC shows discontinuous behavior, similar to a first-order transformation. With further increase in temperature, TEC becomes constant. This implies that the phase transition from D03 to disordered BCC is accompanied by a change in spin fluctuation.  相似文献   

18.
Magnetization, electrical resistivity and magnetoresistance of Pr0.50Ba0.50MnO3−δ manganites with perovskite structure have been investigated as a function of preparation conditions. It was found that the as-prepared samples (prepared in air) show TC=110 K (first order phase transition), whereas for those annealed in flowing argon the TC value increases up to 340 K without change of cubic symmetry (second order phase transition). Ferromagnet–paramagnet transition is accompanied by both a metal–insulator transition and a magnetoresistance peak. The X-ray study has revealed that the samples annealed in argon have broad peaks apparently due to microstrains and crystal structure defects. The argon-treated samples improve the magnetization after subsequent annealing in air at T⩽1000°C. TC of argon-treated samples is stable with respect to annealing in air up to 1300°C where it becomes again 110 K. In contrast, a treatment in vacuum destroys the ferromagnetic order. Auger-spectroscopy has not revealed any additional ions except Pr, Ba, Mn and O for all the samples. External pressure enhances the Curie point of the sample prepared in air at a rate of 43 K/GPa. We have observed that the samples Pr1−xBaxMnO3−δ, x⩾0.30, exhibited the above-mentioned effect of increasing TC after treatment in flowing argon without changes of the phase state, whereas the samples x<0.30 decomposed into different phases. The dramatic increase of TC after argon treatment is supposed to result from microstrains and crystal structure defects in the sample.  相似文献   

19.
The 133Cs spin-lattice relaxation time in a CsHSO4 single crystal was measured in the temperature range from 300 to 450 K. The changes in the 133Cs spin-lattice relaxation rate near Tc1 (=333 K) and Tc2 (=415 K) correspond to phase transitions in the crystal. The small change in the spin-lattice relaxation time across the phase transition from II to III is due to the fact that during the phase transition, the crystal lattice does not change very much; thus, this transition is a second-order phase transition. The abrupt change of T1 around Tc2 (II-I phase transition) is due to a structural phase transition from the monoclinic to the tetragonal phase; this transition is a first-order transition. The temperature dependences of the relaxation rates in phases I, II, and III are indicative of a single-phonon process and can be represented by T1−1=A+BT. In addition, from the stress-strain hysteresis loop and the 133Cs nuclear magnetic resonance, we know that the CsHSO4 crystal has ferroelastic characteristics in phases II and III.  相似文献   

20.
The surface phase transition in a SrTiO3 crystal was studied by second optical harmonic generation. Nonlinear optical response singularities were observed at temperature T*=145 K, which was 40 K higher than the Tc structural phase transition temperature in the crystal volume. Nonlinear critical opalescence in the crystal volume caused by the presence of point defects was studied. The second harmonic field and the intensity of critical opalescence were calculated based on the phenomenological model of nonlinear optical processes with the use of the Landau theory of phase transitions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号