首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An economic approach for implementing X-[1H,19F] double-decoupling MAS NMR experiments with a conventional X-[1H] dual-channel CP MAS probe is demonstrated. The parameters characterising the isolated 29Si-19F spin pair in an organosilicon compound R(3)SiF (R = 9-anthryl) are determined. In addition, we discuss the optimum choice of experimental parameters for determining all 29Si-19F spin-pair parameters from straightforward 29Si MAS NMR spectra with only 1H decoupling applied during acquisition.  相似文献   

2.
采用BRUKER高分辨魔角微量探头(HR/MAS),液相宽带BBO探头和固体CP/MAS探头,对天然橡胶固体、乳液以及天然橡胶溶于氘代苯的溶液进行了1H、13C 1D和2D NMR谱的测试和比较. 发现HR/MAS探头用于天然橡胶固体和乳液时可以得到高分辨的1H、13C谱,克服了CP/MAS探头测试固体13C NMR谱或者是固体1H NMR谱时,谱图存在S/N值可能较小、谱峰可能宽化的弱点.  相似文献   

3.
Applications of double cross-polarization (CP) magic-angle spinning (MAS) NMR spectroscopy, via (1)H/(15)N and then (15)N/(13)C coherence transfers, for (13)C coherence selection are demonstrated on a (15)N/(13)C-labeled N-acetyl-glucosamine (GlcNAc) compound. The (15)N/(13)C coherence transfer is very sensitive to the settings of the experimental parameters. To resolve explicitly these parameter dependences, we have systematically monitored the (13)C{(15)N/(1)H} signal as a function of the rf field strength and the MAS frequency. The data reveal that the zero-quantum coherence transfer, with which the (13)C effective rf field is larger than that of the (15)N by the spinning frequency, would give better signal sensitivity. We demonstrate in one- and two-dimensional double CP experiments that spectral editing can be achieved by tailoring the experimental parameters, such as the rf field strengths and/or the MAS frequency.  相似文献   

4.
We show that it is feasible to use a minicoil for solid-state 19F 1H NMR experiments that has short pulse widths, good RF homogeneity, and excellent signal-to-noise for small samples while using low power amplifiers typical to liquid-state NMR. The closely spaced resonant frequencies of 1H and 19F and the ubiquitous use of fluorine in modern plastics and electronic components present two major challenges in the design of a high-sensitivity, high-field 1H/19F probe. Through the selection of specific components, circuit design, and pulse sequence, we were able to build a probe that has low 19F background and excellent separation of 1H and 19F signals. We determine the principle components of the chemical shift anisotropy tensor of 5-fluoroindole-3-acetic acid (5FIAA) and 5-fluorotryptophan. We also solve the crystal structure of 5FIAA, determine the orientation dependence of the chemical shift of a single crystal of 5FIAA, and predict the 19F chemical shift based on the orientation of the fluorine in the crystal. The results show that this 1H/19F probe is suitable for solid-state NMR experiments with low amounts of biological molecules that have been labeled with 19F.  相似文献   

5.
The supramolecular 1:1 host-guest inclusion compound, p-tert-butylcalix[4]arene x alpha,alpha,alpha-trifluorotoluene, 1, is characterized by 19F and 13C solid-state NMR spectroscopy. Whereas the 13C NMR spectra are easily interpreted in the context of earlier work on similar host-guest compounds, the 15F NMR spectra of solid 1 are, initially, more difficult to understand. The 19F[1H] NMR spectrum obtained under cross-polarization and magic-angle spinning conditions shows a single isotropic resonance with a significant spinning sideband manifold. The static 19F[1H] CP NMR spectrum consists of a powder pattern dominated by the contributions of the anisotropic chemical shift and the homonuclear dipolar interactions. The 19F MREV-8 experiment, which minimizes the 19F-19F dipolar contribution, helps to identify the chemical shift contribution as an axial lineshape. The full static 19F[1H] CP NMR spectrum is analysed using subspectral analysis and subsequently simulated as a function of the 19F-19F internuclear distance (D(FF) = 2.25 +/- 0.01 A) of the rapidly rotating CF3 group without including contributions from additional libration motions and the anisotropy in the scalar tensor. The shielding span is found to be 56 ppm. The width of the centerband in the 19F[1H] sample-spinning CP NMR spectrum is very sensitive to the angle between the rotor and the magnetic field. Compound 1 is thus an attractive standard for setting the magic angle for NMR probes containing a fluorine channel with a proton-decoupling facility.  相似文献   

6.
We present a novel sampling strategy, interleaving acquisition of multiple NMR spectra by exploiting initial polarization subsequently from (1)H and (2)H spins, taking advantage of their different T(1) relaxation times. Different (1)H- and (2)H-polarization based spectra are in this way simultaneously recorded improving either information content or sensitivity by adding spectra. The so-called Relaxation-optimized Acquisition of Proton Interleaved with Deuterium (RAPID) (1)H→(13)C/(2)H→(13)C CP/MAS multiple-acquisition method is demonstrated by 1D and 2D experiments using a uniformly (2)H, (15)N,(13)C-labeled α-spectrin SH3 domain sample with all or 30% back-exchanged labile (2)H to (1)H. It is demonstrated how 1D (13)C CP/MAS or 2D (13)C-(13)C correlation spectra initialized with polarization from either (1)H or (2)H may be recorded simultaneously with flexibility to be added or used individually for spectral editing. It is also shown how 2D (13)C-(13)C correlation spectra may be recorded interleaved with (2)H-(13)C correlation spectra to obtain (13)C-(13)C correlations along with information about dynamics from (2)H sideband patterns.  相似文献   

7.
The effects of multiple-resonance heteronuclear decoupling under magic angle spinning (MAS) on the resolution of one-dimensional 19F and 31P and various two-dimensional MAS NMR spectra and on the residual non-refocusable coherence lifetimes in fluorinated aluminophosphate AlPO4-CJ2, i.e. a compound that contains numerous highly abundant nuclei but no homonuclear spin bath, has been investigated. The design of the four-channel (1H, 19F, 27Al, 31P) MAS probe used for this study is first described. 1H and 1H–27Al double-resonance decouplings allows lengthening the optimized transverse relaxation and increasing the resolution in the 19F and 31P dimensions. Under the application of multi-nuclear decoupling, a two-dimensional 19F–31P CP-HETCOR correlation spectrum for AlPO4-CJ2 is recorded with unprecedented high-resolution in the two dimensions. Moreover, because 1H-decoupling increases the 19F , it has been applied during the entire duration of the 2D NMR experiments, allowing the direct use of residual small interactions to generate 19F–19F and 19F–27Al 2D NMR correlation spectra in AlPO4-CJ2.  相似文献   

8.
Despite success of previous studies, high-resolution solid-state NMR (SSNMR) of paramagnetic systems has been still largely unexplored because of limited sensitivity/resolution and difficulty in assignment due to large paramagnetic shifts. Recently, we demonstrated that an approach using very-fast magic angle spinning (VFMAS; spinning speed 20kHz) enhances resolution/sensitivity in (13)C SSNMR for paramagnetic complexes [Y. Ishii, S. Chimon, N.P. Wickramasinghe, A new approach in 1D and 2D (13)C high resolution solid-state NMR spectroscopy of paramagnetic organometallic complexes by very fast magic-angle spinning, J. Am. Chem. Soc. 125 (2003) 3438-3439]. In this study, we present a new strategy for sensitivity enhancement, signal assignment, and distance measurement in (13)C SSNMR under VFMAS for unlabeled paramagnetic complexes using recoupling-based polarization transfer. As a robust alternative of cross-polarization (CP), rapid application of recoupling-based polarization transfer under VFMAS is proposed. In the present approach, a dipolar-based analog of INEPT (dipolar INEPT) methods is used for polarization transfer and a (13)C signal is observed under VFMAS without (1)H decoupling. The resulting low duty factor permits rapid signal accumulation without probe arcing at recycle times ( approximately 3 ms/scan) matched to short (1)H T(1) values of small paramagnetic systems ( approximately 1 ms). Experiments on Cu(dl-Ala)(2) showed that the fast repetition approach under VFMAS provided sensitivity enhancement by a factor of 8-66 for a given sample, compared with the (13)C MAS spectrum under moderate MAS at 5kHz. The applicability of this approach was also demonstrated for a more challenging system, Mn(acac)(3), for which (13)C and (1)H paramagnetic shift dispersions reach 1500 and 700 ppm, respectively. It was shown that effective-evolution-time dependence of transferred signals in dipolar INEPT permitted one to distinguish (13)CH, (13)CH(2), (13)CH(3), (13)CO2- groups in 1D experiments for Cu(DL-Ala)(2) and Cu(Gly)(2). Applications of this technique to 2D (13)C/(1)H correlation NMR under VFMAS yielded reliable assignments of (1)H resonances as well as (13)C resonances for Cu(DL-Ala)(2) and Mn(acac)(3). Quantitative analysis of cross-peak intensities in 2D (13)C/(1)H correlation NMR spectra of Cu(DL-Ala)(2) provided distance information between non-bonded (13)C-(1)H pairs in the paramagnetic system.  相似文献   

9.
19F/29Si Hartmann–Hahn continuous wave cross-polarization (CP) has been applied under fast magic-angle spinning (MAS) to a powder sample of octadecasil. Strong oscillations occur during CP on a sideband matching condition between the isolated 29Si–19F spin pairs formed by the silicons in the D4R units and the fluoride anions. The magnitude of the dipolar coupling constant was deduced directly from the line-splitting between the intense singularities of the Pake-like patterns obtained by Fourier transformation of the oscillatory polarization transfer. The corresponding Si–F internuclear distance, r=2.62±0.05 Å, is found to be in very good agreement with the X-ray crystal structure and the value of 2.69±0.04 Å recently reported from rotational echo double resonance (REDOR) and transferred echo double resonance (TEDOR) nuclear magnetic resonance (NMR) experiments. Furthermore, the CP technique is still reliable under fast MAS where both REDOR and TEDOR sequences suffer from severe artefacts due to finite pulse lengths. In octadecasil, a spinning frequency of 14 kHz is shown to be necessary for an effective suppression of 19F–19F spin diffusion. The influences of experimental missettings and radiofrequency (RF) field inhomogeneity are taken into account.  相似文献   

10.
In order to shed light on the dissolution mechanisms of water in depolymerized aluminosilicate melts/glasses, a comprehensive one- (1D) and two-dimensional (2D) NMR study has been carried out on hydrous Ca- and Mg-aluminosilicate glasses of a haplobasaltic composition. The applied techniques include 1D 1H MAS NMR and 27Al-->1H cross-polarization (CP) MAS NMR, and 2D 1H NOESY and double-quantum (DQ) MAS NMR, 27Al triple-quantum (3Q) MAS NMR and 27Al-->1H heteronuclear correlation (HETCOR) and 3QMAS/HETCOR NMR. Ab initio calculations were also performed to place additional constraints on the 1H NMR characteristics of AlOH and Si(OH)Al groups. This study has revealed, for the first time, the presence of free OH (i.e. (Ca, Mg)OH), SiOH and AlOH species, in addition to molecular H2O, in hydrous glasses of a depolymerized aluminosilicate composition. The AlOH groups are mostly associated with four-coordinate Al, but some are associated with five- and six-coordinate Al.  相似文献   

11.
The 13C CP/MAS NMR spectrum of [(n-C3H7)4N][Cd(SCN)3], 1, indicates the presence of three non-equivalent thiocyanate ligands, in agreement with the results of a recent single-crystal X-ray diffraction study. Examination of the 13C MAS line shapes allows direct measurement of the indirect spin-spin coupling constants, 1J(14N, 13C) = 16 +/- 1 Hz and 2J(111/113Cd, 13C) = 75 +/- 5 Hz, for the unique N-bonded thiocyanate ligand. This is the first reported measurement of 1J(14N, 13C) and 2J(111/113Cd, 13C) in the solid state. Possible reasons for the failure to observe 1J(14N, 13C) values in previous high-resolution 13C CP/MAS NMR studies are summarized.  相似文献   

12.
A magic-angle spinning (MAS) probe has been constructed which allows the sample to be cooled with helium, while the MAS bearing and drive gases are nitrogen. The sample can be cooled to 25 K using roughly 3 L/h of liquid helium, while the 4-mm diameter rotor spins at 6.7 kHz with good stability (±5 Hz) for many hours. Proton decoupling fields up to at least 130 kHz can be applied. This helium-cooled MAS probe enables a variety of one-dimensional and two-dimensional NMR experiments on biomolecular solids and other materials at low temperatures, with signal-to-noise proportional to 1/T. We show examples of low-temperature 13C NMR data for two biomolecular samples, namely the peptide Aβ14–23 in the form of amyloid fibrils and the protein HP35 in frozen glycerol/water solution. Issues related to temperature calibration, spin–lattice relaxation at low temperatures, paramagnetic doping of frozen solutions, and 13C MAS NMR linewidths are discussed.  相似文献   

13.
Sample heating induced by radio frequency (RF) irradiation presents a significant challenge to solid state NMR experiments in proteins and other biological systems, causing the sample to dehydrate which may result in distorted spectra and a damaged sample. In this work we describe a large volume, low-E (19)F-(1)H solid state NMR probe, which we developed for the 2D (19)F CPMG studies of dilute membrane proteins in a static and electrically lossy environment at 600MHz field. In (19)FCPMG and related multi-pulse (19)F-(1)H experiments the sample is heated by the conservative electric fields E produced in the sample coil at both (19)F and (1)H frequencies. Instead of using a traditional sample solenoid, our low-E (19)F-(1)H probe utilizes two orthogonal loop-gap resonators in order to minimize the conservative electric fields responsible for sample heating. Absence of the wavelength effects in loop-gap resonators results in homogeneous RF fields and enables the study of large sample volumes, an important feature for the dilute protein preparations. The orthogonal resonators also provide intrinsic isolation between the (19)F and (1)H channels, which is another major challenge for the (19)F-(1)H circuits where Larmor frequencies are only 6% apart. We detail steps to reduce (19)F background signals from the probe, which included careful choice of capacitor lubricants and manufacture of custom non-fluorinated coaxial cables. Application of the probe for two-dimensional (19)F CPMG spectroscopy in oriented lipid membranes is demonstrated with Flufenamic acid (FFA), a non-steroidal anti-inflammatory drug.  相似文献   

14.
Structural parameters of peptides and proteins in biomembranes can be directly measured by solid state NMR of selectively labeled amino acids. The 19F nucleus is a promising label to overcome the low sensitivity of 2H, 13C or 15N, and to serve as a background-free reporter group in biological compounds. To make the advantages of solid state 19F NMR fully available for structural studies of polypeptides, we have systematically measured the chemical shift anisotropies and relaxation properties of the most relevant aromatic and aliphatic 19F-labeled amino acids. In this first part of two consecutive contributions, six different 19F-substituents on representative aromatic side chains were characterized as polycrystalline powders by static and MAS experiments. The data are also compared with results on the same amino acids incorporated in synthetic peptides. The spectra show a wide variety of lineshapes, from which the principal values of the CSA tensors were extracted. In addition, temperature-dependent T(1) and T(2) relaxation times were determined by 19F NMR in the solid state, and isotropic chemical shifts and scalar couplings were obtained in solution.  相似文献   

15.
It was recently demonstrated that the nuclear magnetic resonance (NMR) linewidths for stationary biological samples are dictated mainly by magnetic susceptibility gradients, and that phase-altered spinning sideband (PASS) and phase-corrected magic angle turning (PHORMAT) solid-state NMR techniques employing slow and ultra-slow magic angle spinning (MAS) frequencies can be used to overcome the static susceptibility broadening to yield high-resolution, spinning sideband (SSB)-free 1H NMR spectra [Magn. Reson. Med. 46 (2001) 213; 47 (2002) 829]. An additional concern is that molecular diffusion in the presence of the susceptibility gradients may limit the minimum useful MAS frequency by broadening the lines and reducing SSB suppression at low spinning frequencies. In this article the performance of PASS, PHORMAT, total sideband suppression (TOSS), and standard MAS techniques were evaluated as a function of spinning frequency. To this end, 300MHz (7.05T) 1H NMR spectra were acquired via PASS, TOSS, PHORMAT, and standard MAS NMR techniques for a 230-microm-diameter spherical glass bead pack saturated with water. The resulting strong magnetic susceptibility gradients result in a static linewidth of about 3.7kHz that is larger than observed for a natural biological sample, constituting a worst-case scenario for examination of susceptibility broadening effects. RESULTS: (I) TOSS produces a distorted centerband and fails in suppressing the SSBs at a spinning rate below approximately 1kHz. (II) Standard MAS requires spinning speeds above a few hundred Hz to separate the centerband from the SSBs. (III) PASS produces nearly SSB-free spectra at spinning speeds as low as 30Hz, and is only limited by T(2)-induced signal losses. (IV) With PHORMAT, a SSB-free isotropic projection is obtained at any spinning rate, even at an ultra-slow spinning rate as slow as 1Hz. (V) It is found empirically that the width of the isotropic peak is proportional to F(-x), where F is the spinning frequency, and x=2 for MAS, 0.84 for PASS, and 0.5 for PHORMAT.  相似文献   

16.
Rheometry, 13C CP/MAS NMR spectra and 1H spin-lattice relaxation times T1 and T1rho have been employed to study the structure and molecular dynamics in composites of polyethylene (LDPE) with calcium carbonate filler. It has been found that the addition of the filler into the polymer leads to an increase in composite rigidity and a decrease in mobility in its crystalline regions. The presence of the filler affects the crystallization process making the crystal structure less perfect and reduces the size of the crystallites.  相似文献   

17.
(CH(3))(4)NPF(6) is studied by NMR measurements to understand the internal motions and cross relaxation mechanism between the heterogeneous nuclei. The spin lattice relaxation times (T(1)) are measured for (1)H and (19)F nuclei, at three (11.4, 16.1 and 21.34 MHz) Larmor frequencies in the temperature range 350-50K and (1)H NMR second moment measurements at 7 MHz in the temperature range 300-100K employing home made pulsed and wide-line NMR spectrometers. (1)H NMR results are attributed to the simultaneous reorientations of both methyl and tetramethylammonium groups and motional parameters are evaluated. (19)F NMR results are attributed to cross relaxation between proton and fluorine and motional parameters for the PF(6) group reorientation are evaluated.  相似文献   

18.
The crystal structure and phase transition temperature of [N(C2H5)4]2CuBr4 are studied using X-ray diffraction and differential scanning calorimetry (DSC); measurements revealed a tetragonal structure and the two phase transition temperatures TC of 204 K and 255.5 K. The structural geometry near TC is discussed in terms of the chemical shifts for 1H magic angle spinning (MAS) nuclear magnetic resonance (NMR) and 13C cross-polarization (CP)/MAS NMR. The two inequivalent ethyl groups are distinguishable by the 13C NMR spectrum. The molecular motions are discussed in terms of the spin–lattice relaxation times T in the rotating frame for 1H MAS NMR and 13C CP/MAS NMR. The T results reveal that the ethyl groups undergo tumbling motion, and furthermore that the ethyl groups are highly mobile.  相似文献   

19.
The hydrogen bond of the type N-H...N in imidazole crystal has been studied by one and two-dimensional 15N exchange CP/MAS NMR measurements as well as the powder NMR spectrum. The chemical shift anisotropies for -N= and -N< were determined from the powder 1D spectrum. In 2D exchange CP/MAS NMR spectrum, the cross peaks between the 15N main resonance peaks for -N= and -N< were observed, implying that magnetization exchange between -N= and -N< takes place. The 1D exchange CP/MAS NMR measurements determined the exchange rate of magnetization at 289 K to be 1.3 and 1.5 s(-1) for -N= and -N<, respectively. The proton-driven spin-diffusion model interprets the experimental values, and the exchange rate depends strongly on the RF power of the proton decoupling field, suggesting that the magnetization transfer between -N= and -N< takes place by the 1H-driven spin-diffusion mechanism.  相似文献   

20.
以钠基蒙脱土和有机蒙脱土为研究对象,分别利用29Si魔角旋转核磁共振谱(29Si MAS NMR)、1H-29Si交叉极化/魔角旋转核磁共振谱(1H-29Si CP/MAS NMR)和1H魔角旋转核磁共振谱(1H MAS NMR)对蒙脱土的纯度、蒙脱土片层间的有机插层反应、有机-无机界面相互作用、蒙脱土界面硅原子的受限...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号