首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
本文主要对光纤Bragg光栅的温度传感特性进行了理论分析,并通过实验,验证了光纤Bragg光栅反射波长与温度的线性变化关系,根据测量数据拟合出反射波长与温度之间的变化曲线。实验结果表明:光纤光栅对温度非常敏感;具有很好的线性度;辅助伸缩材料提高了光纤Bragg光栅温度传感器的灵敏度:其适合做温度传感器。  相似文献   

2.
研究了小直径光纤光栅的研制以及传感中的温度应变交叉敏感问题.首先根据耦合模理论,分析了小直径光纤Bragg光栅光谱特性,确定了包覆层为80 μm的单模光纤加工成中心波长为1 528 nm的Bragg光栅的栅长及周期,并研究了小直径光纤光栅与解设备之间的连接方式.其次利用等强度梁的变形特点,结合矩阵法,提出基于等强度悬臂梁双Bragg光纤光栅矩阵算法,对小直径光纤Bragg光栅的交叉敏感问题进行研究.温度和应变的实验辨别误差分别为5%和6%.实验结果表明,该方法可以分离温度和应变对光纤Bragg光栅传感的影响.采用该方法去除交叉影响,K矩阵始终存在逆矩阵,因此对所采用的光栅无特殊要求,从而扩大了光纤光栅选用范围,并将温度和应变识别出来.  相似文献   

3.
基于光纤Bragg光栅反射波带宽展宽的压力传感研究   总被引:13,自引:9,他引:4  
报道了一种新颖的光纤Bragg光栅压力传感装置,提出并实现了利用光纤Bragg光栅反射波带宽展宽实现压力传感的新方法.利用压力作用下双孔悬臂梁非均匀应变带动光栅使Bragg反射波漂移的同时带宽展宽,实现压力传感.在0~23.5 N的测量范围内,基于光谱分析仪0.05 nm的光谱分辨率,压力分辨率为0.54 N,带宽最大展宽量2.14 nm,压力响应曲线具有良好的线性.多次测量表明:展宽波型稳定,重复性好.  相似文献   

4.
周次明  陈留勇 《应用光学》2006,27(6):576-580
光纤Bragg光栅在通信和传感领域有着广泛的应用。根据倾斜光纤Bragg光栅的结构特点,利用耦合模原理,运用传输矩阵法,模拟分析了倾斜角度对光纤Bragg光栅反射特性的影响,并用实验对模拟结果进行了验证。实验和模拟结果表明:随着倾斜角的增大,中心反射波长向长波方向移动,反射带宽变窄,反射率减小。这个结论对倾斜Bragg光纤光栅的生产和应用有一定的指导作用。  相似文献   

5.
分体插接式光纤光栅应变片设计与实现   总被引:1,自引:0,他引:1  
提出一种适合作为二次变换元件使用的通用型应变传感预制结构——光纤光栅应变片.它以裸Bragg光栅为研究对象,采用分体式设计方法把敏感光栅与连接光纤分别封装于独立的基体中,并通过两个基体相互之间的插入实现了Bragg光栅与测量光路的机械连接.理论分析和实验研究表明:光纤光栅应变片具有与Bragg光栅相同的反射谱,其测量线性度好,灵敏度高,温度误差则随被测试件性质不同而变化,当试件材料与基底材料一致时,温度误差可以忽略.  相似文献   

6.
D形光纤Bragg光栅弯曲灵敏度的理论和实验研究   总被引:2,自引:1,他引:1  
周金龙  董小鹏  石志东 《光子学报》2006,35(11):1734-1737
用材料力学理论分析了D形光纤Bragg光栅(D-shaped fiber Bragg grating,D-FBG)以及常规光纤Bragg光栅由弯曲引起的轴向应变,得到了光栅Bragg波长漂移的弯曲敏感特性.实验结果和理论计算结果基本相符.与常规FBG相比,该D-FBG的弯曲灵敏度要高近80倍.因此D-FBG可以直接应用于弯曲形变的测量,以及间接应用于压力、加速度等物理量的测量.理论分析和实验结果对采用该类型光纤光栅的器件和传感系统的设计具有参考意义.  相似文献   

7.
光纤光栅温度传感理论与实验   总被引:26,自引:0,他引:26       下载免费PDF全文
从光纤光栅温度传感模型出发,理论分析研究了光纤光栅的温度传感特性,推导了光纤光栅温度传感的一阶、二阶和有效线性灵敏度系数的解析式,计算了各灵敏度系数的理论值,实验得到了反射波长与温度的二次多项式,对比分析了理论与实验结果,讨论了石英的力学参数对光纤光栅温度传感特性的影响、反射波长与温度的线性及非线性的适用范围等问题. 关键词: 光纤光栅 光纤传感 温度传感  相似文献   

8.
光纤光栅传感器交叉敏感问题研究   总被引:5,自引:1,他引:5       下载免费PDF全文
张博  严高师  邓义君 《应用光学》2007,28(5):614-618
交叉敏感问题是光纤光栅传感器在实际应用中需面对的一个关键问题。从光纤Bragg光栅的传感理论出发,分析了光纤光栅在同时测量应变和温度时引起交叉敏感的物理机理,建立了带有温度-应变交叉灵敏度系数的光纤Bragg光栅反射波长方程。利用双波长矩阵算法针对上述建立的光纤光栅方程进行了误差分析,获取了在交叉敏感情况下温度和应变的相对误差曲线图。结合相对误差表达式和曲线图分析讨论了交叉敏感对测量带来的影响。结果表明在温度和应力测量中随着测量温度或者应变变化量的增大,忽略交叉敏感项而带来的测量误差越来越明显。  相似文献   

9.
光纤Bragg光栅水听器特性及实验研究   总被引:4,自引:3,他引:1  
郑承栋  郑黎  何俊华  陈良益 《光子学报》2006,35(12):1934-1940
论述了光纤Bragg光栅(FBG)水听器探头基元 (FBG)的传感特性,分析了FBG的耦合系数、反射率、反射带宽和栅长对光纤Bragg光栅水听器传感特性的影响.通过改进光纤Bragg光栅水听器探头封装结构,增加了其压力敏感系数.并将实验结果与标准水听器(压电型)比较,标定出光纤Bragg光栅水听器的声压灵敏度;对传感信号进行电路解调,得出了解调结果,结果显示与原始声波信号基本一致.试验表明,在1 kHz~25 kHz的声波检测范围,光纤Bragg光栅水听器响应平坦度好,信号输出稳定,证明文中采取的改进措施是有效的.  相似文献   

10.
报道了一种基于掺铒光纤激光器瞬态特性的新型应变传感系统.用光纤环反射镜和光纤Bragg光栅(FBG)构成Fabry-Perot线型腔.腔内插入一个长周期光纤光栅(LPG),其透射谱的中心波长为1574.4nm.FBG的带宽为0.23nm,不受力时其反射波长为1557.98nm,位于LPG的透射谱左沿;当FBG受力时激射波长向长波方向移动,激光通过LPG时透射损耗增大,腔损耗的增加将使激光激射延迟时间增加.因此,应变的大小可以通过激光产生的延迟时间来测量.这种新型应变传感器的分辨率和灵敏度由抽运光脉冲的高、 关键词: 应变传感 光纤激光器 时域测量 光纤Bragg光栅  相似文献   

11.
用一根光纤光栅实现温度与应变的同时测量   总被引:10,自引:1,他引:9  
报道了一种用一根光纤光栅实现温度与应变同时测量的新方案。用于同时传感温度与应变的光纤光栅写于两种不同光纤的连接处,本身具有两个反射峰。将其中半个光栅粘于热膨胀系数较大的基底材料上,这样,两个反射峰便具有不同的温度及应变响应,由此实现温度与应变的同时测量。  相似文献   

12.
带宽调制型单光纤光栅温变无补偿位移传感   总被引:2,自引:0,他引:2  
报道了利用反射谱带宽调制和光强差分探测技术实现单一光纤光栅温变无补偿位移精确测量的新方法。设计了一种结构新颖的曲臂梁位移传感装置,结合光波导理论与材料力学原理分析了光纤光栅在高斯应变作用下光栅反射谱侧向梯度展宽的成因,理论推导了特殊结构梁在外力作用下光栅反射谱带宽/反射光强与压力之间的响应关系。光栅反射谱侧向梯度展宽的同时反射光强线性增加,利用光强差分检测方法消除光源出光抖动的影响,提高了位移测量精度。基于带宽调制的光纤光栅位移传感方法免受温度变化的影响,在-10℃~80℃的温度变化范围内,测量误差小于1.2%,实现了单光纤光栅温变无补偿位移测量。  相似文献   

13.
在用光纤布拉格光栅作为反射器的掺镱光纤激光器的输出光谱中发现激光波长相对于光纤光栅反射中心偏移的现象,偏移量相当于光纤光栅反射带宽的一半。通过实验证明偏移现象与光纤光栅的反射特性和热效应无关,并且在不同的温度和不同的光纤光栅反射波长的情况下都得到了同样的结果。采用激光增益线形的有关理论,对这一现象进行了分析,实验结果与理论分析相一致。  相似文献   

14.
针对航天领域复合材料结构在空间服役环境的热响应监测需求,研究了一种热载荷作用下基于光纤Bragg光栅(FBG)反射光谱特征分析的碳纤维蜂窝夹芯结构监测方法。将光纤Bragg光栅传感器分别植入碳纤维蜂窝夹芯结构的不同铺层,通过监测不同热载荷下各铺层位置的光纤光栅反射光谱,得到碳纤维蜂窝夹芯结构相关铺层位置热应变特征。研究表明,碳纤维蜂窝夹芯结构不同材料铺层的热应变特征存在一定差异。植入外蒙皮表面与玻璃布之间的光纤光栅反射光谱随着温度升高,中心波长向长波方向漂移,且波形未出现明显改变。埋植于外蒙皮第二、三层碳纤维织物预浸料之间的光栅反射光谱随着温度降低逐渐出现旁瓣、多峰等啁啾效应,其主峰与右侧次峰中心波长均向短波方向逐渐漂移,主峰峰值幅度变化较小,温度灵敏度约为5.56×10-3 dBm·℃-1,而右侧次峰幅度显著增大,温度灵敏度约为40.32×10-3 dBm·℃-1;埋植于内蒙皮和蜂窝芯子之间的光栅反射光谱随着温度降低,其半波峰带宽逐渐增大,变化率约为3.19 pm·℃-1,且出现显著多峰趋势,这是由于层间热应力分布不均匀所形成。在-70~+60 ℃温度范围,各植入层热应变均随温度升高而增大,且变化趋势相接近,而在+60~+120 ℃温度范围内,各植入层热应变变化趋势呈现显著差异。这些特性能够为后继空间环境复合材料航天器结构状态在轨监测提供有益帮助。  相似文献   

15.
根据长周期光纤光栅具有多个不同损耗峰的光谱特性提出了一种使用单个LPG对温度和应变两参数进行同时区分测量的新方案。实验选用了具有不同温度和应变传感灵敏度的第一和第四损耗峰,通过观测其相应的光谱图,得到因测量参数变化而导致的谐振波长的偏移。根据相应的参数求解矩阵方程,当被测量变化较小时,通过计算可知,交叉敏感对参数的测量基本上不产生影响;而当被测量变化较大时,可通过适当补偿消除交叉敏感而带来的偏差。实验测得的温度和应变误差分别是±0.92℃和±22με,该方案能较好地解决测量中存在的应变和温度之间的交叉敏感问题,有效地提高了系统的测量精度。实验结果表明,利用长周期光纤光栅的不同损耗峰同时测量温度和应变的方法是切实可行的,且实验系统体积小,成本较低,简单实用,具有较好的应用前景。  相似文献   

16.
光纤光栅啁啾化传感研究   总被引:6,自引:2,他引:4  
提出了光纤光栅啁啾化传感概念和传感机理,将光纤光栅微观分解为栅区长度范围的许多具有独立感知能力且彼此关联的有效作用子栅集,表述了有效作用子栅集与待测环境场空间梯度分布之间的对应关系,从而较好地解释了光纤光栅啁啾谱产生的内在机理.理论推导并实验验证了光栅啁啾谱各谱参量(波长、带宽和反射光强)与待测环境场(温度和应变)之间的对应关系,为利用单一光纤光栅实现多参量同时区分测量、任意非均匀空间分布场传感提供了科学有效的解决方法.  相似文献   

17.
提出并研制了一种结构简单、成本低廉的温度与应变同时测量系统,其结构是在保偏光纤Sagnac环内接入一个长周期光纤光栅(LPFG)。利用LPFG对保偏光纤Sagnac环的透射光谱进行调制,通过监测谐振峰波长和强度的变化,发现波长随温度和保偏光纤的应变变化,强度随LPFG的应变变化,因此可以实现温度与应变的区分测量,并且可判断出应变的施加位置。实验得到该系统的温度灵敏度为0.181 81 nm·℃-1,LPFG区的应变灵敏度为0.005 283 dB·με-1,保偏光纤Sagnac环区的应变灵敏度为0.015 72 nm·με-1。实验结果表明该方案可行,并具有一定的实用性。  相似文献   

18.
利用光纤光栅的反射谱设计了一种用于混凝土纵向裂缝三维应变传感信号的检测及分析处理的方法.利用ANSYS软件自底向上采用构造法构建混凝土三维断裂模型,分析径向均匀作用力下光纤光栅三轴的应力大小,由三维受力模型拟合光栅传感器的三轴应变函数,给出径向作用力下x和y偏振方向谐振波长与三轴应力间的关系,并且由传输矩阵法计算三轴应力作用下光栅反射谱的变化规律;理论分析和模拟计算光纤光栅传感光谱反射峰的分裂规律.结果表明:在均匀的20N作用力下,10cm长光栅x偏振方向的波长偏移量最大值为10.1nm,y偏振方向的波长偏移量最大值为12nm,此时光纤光栅的谐振峰产生明显分裂,形成两个谐振峰,随着载荷的不断增大,两个谐振峰不断地向两边分开,反射峰的分裂点从短波长向长波方向移动,分裂出来的两个谐振峰中短波谐振峰的反射率高于长波谐振峰,但短波谐振峰的带宽小于长波谐振峰带宽;当光栅长度增加至15cm时,在相同的作用力下,光栅两个反射峰的半高宽度均增加,但两个反射峰的间距几乎不变,灵敏度达0.14nm/N.本文研究可将单根光栅结构传感器的二维传感扩展到三维传感.  相似文献   

19.
采用传输矩阵法系统研究轴向非均匀应变场下相移光栅光谱特性,对均匀应变、线性应变、二次应变以及三次应变分布下相移光栅反射谱进行仿真,分析应变分布函数各项系数对反射率、通透带宽、透射窗口对应波长以及光谱形状的影响,并得出规律性结论。基于不同形状悬臂梁组建应变调谐实验装置,利用有限元法计算固定于不同形状悬臂梁表面相移光栅栅区应变分布,结合数值计算结果进行相移光栅应变调谐实验,研究相移光栅栅区轴向在均匀应变场、线性应变场以及二次应变场下相移光栅的反射光谱,实验结果表明在不同应变场下相移光栅反射谱呈现规律性变化,与仿真结果很好吻合。  相似文献   

20.
光纤Bragg光栅压力传感机理研究   总被引:6,自引:1,他引:5       下载免费PDF全文
对光纤Bragg光栅的压力传感机理进行了理论研究。分析了引起光纤光栅中心波长偏移的各种物理效应,并对几种不同形式压力下各种物理效应所引起的灵敏度系数进行了计算。计算结果表明,纵向和横向压力灵敏度系数相反,屏蔽一个方向可获得较大的压力传感灵敏度;波导效应所引起的应变灵敏度系数都比弹光效应小几个数量级,因此可以忽略。并首次提出在不同方向的压力作用下,弹光效应对应变灵敏度具有不同的贡献。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号