首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
三维圆柱体绕流的发展和演化   总被引:1,自引:0,他引:1       下载免费PDF全文
王刚  梁新刚 《中国物理》2005,14(7):1392-1397
结合三阶精度格式求解可压缩NS方程,本文研究了绕过三维圆柱体的流动结构,阐明了流动的演化机理。大攻角下,在三维圆柱体背风区形成了一个脱落涡序列,其截面流态非常类似于二维圆柱绕流,主涡、二次涡以及tertiary涡形成了一个层次结构。前一个主涡脱体后,tertiary涡将演化为其后续的新生主涡,并且合并圆柱体对称面另一侧的二次涡。  相似文献   

2.
扩压叶栅叶顶间隙流动结构研究   总被引:1,自引:0,他引:1  
本文对某扩压叶栅叶顶间隙流动结构进行了研究,通过三维数值仿真,对叶顶间隙流场中的旋涡结构构成、空间分布及相互作用关系进行了分析.研究采用Q判据识别流场中的涡,发现叶顶间隙气流的泄漏流动形成了叶尖分离涡、二次涡以及泄漏涡等旋涡结构,其空间位置及空间尺度具有明显差别。叶尖分离涡的堵塞作用对泄漏涡的强度、空间位置造成影响;在叶顶泄漏流动与泄漏涡的共同作用下形成了叶尖二次涡。涡系间存在的相互作用共同构成了叶顶间隙流场框架。  相似文献   

3.
Heating effects of air flows past a two-dimensional circular cylinder at low Reynolds numbers and low Mach numbers are investigated by numerical simulation. The cylinder wall is heated partially rather than heated on the whole surface as with previous researches. The heating effects are completely different for various heating locations on the cylinder surface. Heating either windward or leeward side stabilizes the flow and reduces or completely suppresses vortex shedding from the cylinder at supercritical Reynolds numbers, which is consistent with previous results of heating on the whole surface of the cylinder. However, as the lateral sides of the cylinder (perpendicular to the stream-wise direction) are heated, an adverse effect is found for the first time in that the flow is destabilized and vortex shedding can be excited at subcritical Reynolds numbers. As the lateral sides of the cylinder are cooled, the flow is stabilized.  相似文献   

4.
本文利用基于复合网格系统的计算方法,对Re=50~1200的近壁插入圆柱流场进行数值模拟,研究过渡流状态下在壁面附近插入圆柱对下游壁面传热强化的影响。并基于低速循环水槽流动实验台,采用粒子成像测试法(PIV)对Re=100~500的近壁插入圆柱流场进行可视化实验研究,验证了数值模拟方法的可靠性。研究结果表明:近壁插入圆柱流场在Re=100时进入过渡流状态;Re直接影响圆柱尾流中周期性涡脱和壁面涡岛的发生位置及其洗刷效应的大小,随着Re的增大,洗刷效应明显增强,因而,过渡流范围内Re越大,圆柱下游壁面传热强化越大。  相似文献   

5.
Through visualization and measurement on the cylinder-plate junction flow, we show the horseshoe vortices can be significantly modified by altering the section shape of the cylinder. Both smoke-wire and Laser-Induced-Fluorescence (LIF) are employed to visualize the vortex structures. Laser Doppler velocimeter is used to measure the velocity field in the symmetry plane upstream of the cylinder. Electrical pressure-scanning valve is applied to acquire the pressure on the plate. It is found that, the sharper the frontal shape of the cylinder, the closer the vortex shedding position and the primary horseshoe vortex location to the cylinder. We quantitatively show the variation of the scale and strength of the primary horseshoe vortex, as well as the maximum wall shear stress, when the section shape of the cylinder is varied. The reduced streamwise adverse pressure gradient explains why the horseshoe vortices are significantly suppressed when the frontal shape of the cylinder becomes sharper. At last, we present a swept thin cylinder installed in front of the primary cylinder can be used to suppress the horseshoe vortices, which is greatly effective and easy to implement.  相似文献   

6.
We performed large-eddy simulations (LES) of forced impinging jets over smooth and rough surfaces, containing large-scale, azimuthal vortices generated by the enhanced primary instability in the jet shear layer. The interaction between these vortices and the turbulence in the wall jet that is formed downstream of the impingement region determines their rate of decay. To explore the surface-roughness effects on the evolution of the vortices, sand-grain-like surfaces are generated using uniformly distributed but randomly oriented ellipsoids. The flow is compared to our previous LES of jets impinging on a smooth surface. In spite of the severe modification caused by the roughness on the near-wall flow, the vortex development is not significantly altered. Slightly faster decay of the primary vortices is observed in the rough-wall case compared to the smooth-wall one; the secondary vortex that detaches from the wall and is lifted up has larger vorticity. The highly disturbed near-wall flow is advected outward and affects the evolution of the primary vortex for a longer period during the vortex interaction. The robust turbulent generation mechanism in the outer shear layer, however, mitigates the changes in vortex behaviour. The momentum deficit and the enhancement of turbulence due to the surface roughness play a key role during this process.  相似文献   

7.
建立多孔结构覆面柱体绕流模型, 采用含Darcy-Brinkman-Forchheimer作用力项的格子Boltzmann方程对覆盖多孔介质层的方柱绕流进行数值模拟, 研究多孔介质对钝体绕流流场特性的影响。结果表明: 相比于不可渗透壁的柱体, 引入合适参数的多孔介质覆面层后可以有效降低其升力脉动幅值, 但阻力有所增加。同时, 较高雷诺数下多孔方柱的数值模拟表明: 多孔介质壁面使得尾迹区域的剪切层相距更远, 降低了尾流处湍动能, 并将雷诺应力的峰值移动到尾迹区域, 抑制了方柱两侧的动量交换, 使动量交换的位置发生在尾迹区域, 继而使得尾迹的涡街更加规则化。  相似文献   

8.
The dependence of the characteristics of vortex sound caused by an air flow around a rigid cylinder on various factors, including the turbulence of the incident flow, the inhomogeneity of the cylinder surface, and the sound radiation of an external source, is experimentally investigated. Measurements have made it possible to specify the mechanism of vortex sound radiation under the action of external factors, to relate the radiation intensity and the drag to the type of air flow around the body, and to propose possible ways of reducing the vortex sound radiation intensity.  相似文献   

9.
刘应征  陈汉平 《计算物理》2001,18(4):313-317
针对圆柱坐标系下原始变量Navier Stokes方程,在有限控制容积法和压力修正的基础上,引入多重交错网格算法及非线性方程的FAS全近似格式,并对封闭圆柱空腔内的旋转流动进行数值模拟.  相似文献   

10.
对向心透平叶轮内部复杂流动在级环境下进行了全三维黏性数值模拟,结合拓扑学原理分析了设计工况和非设计工况下其内流动分离及各种涡系发展的演变过程,初步建立了向心透平叶轮内的旋涡模型,阐述了流动损失的形成机理。研究表明:向心透平叶轮内部涡系与轴流式透平存在较大差别,且流动分离及涡系主要集中在吸力面侧;设计工况下向心透平叶轮内的主要旋涡包括马蹄涡、通道涡及泄漏涡,其主要表现为通道涡与泄漏涡相互影响和掺混,是主要损失的形成原因;非设计工况下,主流在叶轮叶片前缘处发生大范围的分离及回流,造成了较大的能量损失,但二次流损失所占比例较小。  相似文献   

11.
数值模拟圆柱绕流旋涡运动及尾流不稳定性分析   总被引:5,自引:1,他引:4  
1引言流体绕过圆柱所产生的非定常旋涡运动以及由此引起的流动不稳定性在理论和实践上都具有重要的意义。数值模拟圆柱绕流旋涡产生及演化过程,探讨圆柱尾流涡街产生的机制,控制尾迹不同速度型以抑制涡街的产生,避免涡激振动在工程上造成破坏作用具有重大实际意义。为使问题简化,本文以二维圆柱绕流作为研究对象。该流动涉及到非定常分离,旋涡的形成、运动及发展,流动不稳定性质改变等许多未完全解决的问题。B。had等山对圆柱突然起动问题作了一系列实验研究。文献门对二维圆柱绕流问题作了系统数值研究。本文采用文献门提出的差分格…  相似文献   

12.
本文对前缘弯掠斜流转子叶顶间隙内的流动特性进行了数值分析。结果表明:叶顶间隙气流与主流发生卷吸而生成泄漏涡。泄漏涡作用的区域具有较低的压力分布。在叶片通道内,泄漏涡沿着与转子旋向相反的方向朝相邻叶片的压力面移动。大间隙时的泄漏涡比小间隙时强烈。低流量时泄漏涡的作用区域比高流量时大。在各种流量特性下,叶顶尾缘近吸力面区域都存在着二次间隙流。  相似文献   

13.
This study deals with aerodynamics phenomena in a rapid compression machine. The mixture is initially at rest in the cylinder, and the piston is at bottom dead center; therefore there is no flow generated during the intake stroke. Moreover, flat and parallel piston and cylinder-head faces avoid squish flow. A corner vortex is generated when the piston surface, moving toward the top dead center, scrapes the boundary layer on the cylinder wall. This vortex is visualized by shadowgraph and then modeled to evaluate its characteristics. During the expansion, the gas trapped in the crevices between the piston, piston ring and cylinder wall flows back into the combustion chamber. Both crevice jet and corner vortex exist in real engines and their interactions with combustion are important: the corner vortex impairs flame kernel development and the crevice gases constitute a major source of unburnt gas.  相似文献   

14.
In order to protect the vulnerable turbine components from extreme high temperature, coolant flow is introduced from the compressor to the disk cavity, inevitably interacting with the main flow. This paper describes an experimental investigation of the interaction between the main flow and the purge flow in a low-speed turbine cascade with three purge flow rates, Cm = 0, Cm = 1%, and Cm = 2%. In order to study the effect of the interaction between the main flow and the purge flow on the secondary flows, a Rortex method developed by Liu Chaoquan is introduced to identify the vortex in the flow field. In the meantime, a method to calculate the mean entropy production rate based on the particle image velocimetry (PIV) result is adopted to investigate the flow loss. The PIV result indicates that the purge flow has a prominent impact on the flow field of the cascade passage, changing the velocity distribution that induces a local blockage area. The results of vortex identification show that the purge flow promotes the generation of the passage vortex near the suction side. In addition, the purge flow makes the passage vortex migrate to the tip wall direction, enlarging the region affected by the secondary flow. The mean entropy production (MEP) result shows that the flow loss is mainly caused by the passage vortex. The coincidence of the high-MEP region and the location of the passage vortex indicates that the purge flow increases the secondary flow loss by affecting the formation and the migration of the passage vortex.  相似文献   

15.
A cylinder attached to an end-wall normal to its axis is a common feature of many practical flow systems, e.g. in turbo-machinery or when a bridge is supported by a pillar from the bed of a river. In this situation, the nominally two-dimensional boundary layer flow incident upon the cylinder develops strong three-dimensional features and a very pronounced vortex structure may arise in the upstream flow close to the wall. For the appropriate Reynolds number range, the upstream vortical structure is nominally steady and is commonly referred to as the “horseshoe vortex system”. In contrast, the flow downstream is unsteady and periodic over a wide range of Reynolds numbers and vortices aligned with the cylinder axis are shed at a regular frequency into the wake. The generation of both these vortex systems requires energy to be extracted from the incident flow with the result that the drag force on the cylinder is increased.This paper concentrates on the upstream region of the cylinder and discusses an investigation in which two-component Particle Image Velocimetry (PIV) has been used to visualise the flow behaviour for a circular cylinder on a plane end-wall. The use of PIV has enabled two orthogonal velocity components to be measured in planes defined by the upstream flow direction and the axis of the cylinder. The third (out-of-plane) velocity component was then calculated by integrating the continuity equation. Subsequently, the velocity field information has been manipulated and converted into time-averaged information.Discussion of the measured results confirms that colour displays are an invaluable aid to understanding this complex fluid flow situation since they reveal substantially more information than grey-scale plots of the same data. In particular, the source of the horseshoe vortex system can be identified when colour plots of the time-averaged velocity and vorticity distributions are obtained. A limited amount of information on the unsteady vortex structures appearing in the end-wall region upstream of the cylinder is also presented. Finally, the experimental findings are discussed in relation to the results of previous workers.  相似文献   

16.
通过数值模拟及实验研究了润湿性及磁场对液态金属膜流流动状态的影响.首先,通过数值模拟研究了润湿性对膜流流动状态的影响.结果表明,当润湿性不好时,液态金属膜流容易发展为溪状流而不能完全覆盖底壁,入口膜厚较薄时更易发展为溪状流;在入口膜厚及其它情况相同时,密度越小越易发展为溪状流.其次,研究了磁场对膜流流动状态的影响.结果表明,槽道与流体润湿性不好时,有磁场情况下液态金属膜流覆盖底壁的区域较无磁场时增加,强磁场对膜流的湍流有抑制作用.最后,液态金属膜流实验结果表明,润湿性不好时,镓铟锡合金膜流容易收缩发展为溪状流,这与数值模拟的结果是一致的.上述研究结果对磁约束聚变堆液态第一壁的设计具有指导意义.  相似文献   

17.
通过数值模拟及实验研究了润湿性及磁场对液态金属膜流流动状态的影响。首先,通过数值模拟研究了润湿性对膜流流动状态的影响。结果表明,当润湿性不好时,液态金属膜流容易发展为溪状流而不能完全覆盖底壁,入口膜厚较薄时更易发展为溪状流;在入口膜厚及其它情况相同时,密度越小越易发展为溪状流。其次,研究了磁场对膜流流动状态的影响。结果表明,槽道与流体润湿性不好时,有磁场情况下液态金属膜流覆盖底壁的区域较无磁场时增加,强磁场对膜流的湍流有抑制作用。最后,液态金属膜流实验结果表明,润湿性不好时,镓铟锡合金膜流容易收缩发展为溪状流,这与数值模拟的结果是一致的。上述研究结果对磁约束聚变堆液态第一壁的设计具有指导意义。  相似文献   

18.
The fully 3D turbulent incompressible flow around a cylinder and in its wake at a Reynolds number Re = = 9×104 based on the cylinder diameter and Mach number M = 0.1 is calculated using Large Eddy Simulations (LES). Encouraging results are found in comparison to experimental data for the fluctuating lift and drag forces. The acoustic pressure in far-field is commutated through the surface integral formulation of the Ffowcs Williams and Hawkings (FWH) equation in acoustic analogy. Five different sound sources, the cylinder wall and four permeable surfaces in the flow fields, are employed. The spectra of the sound pressure are generally in quantitative agreement with the measured one though the acoustic sources are pseudo-sound regarding the incompressible flow simulation. The acoustic component at the Strouhal number related to vortex shedding has been predicted accurately. For the broad band sound, the permeable surfaces in the near wake region give qualitative enough accuracy level of predictions, while the cylinder wall surface shows a noticeable under-prediction. The sound radiation of the volumetric sources based on Lighthill tensors at vortex shedding is also studied. Its far-field directivity is of lateral quadrupoles with the weak radiations in the flow and cross-flow directions.  相似文献   

19.
We report new results on the ultrasonic characterization of a fluid flow using an acoustic time-reversal mirror (TRM). The structure of a large vortex generated by a rotating disk in a hollow cylinder is investigated both inside and below the cylinder. For mean-flow characterization, the TRM is shown to be a powerful vorticity detector. Experimental time-of-flight data are successfully compared to a numerical simulation of the flow and the orthoradial velocity is reconstructed using simple geometrical acoustics. Real-time measurements allow us to extract the precession motion of the vortex, providing direct, non-intrusive, and dynamical information on the flow. Received 23 April 1998  相似文献   

20.
绕圆柱体自由表面磁流体流动和传热的研究   总被引:1,自引:0,他引:1  
本文对在不同雷诺数下,绕圆柱体的磁流体自由表面流动及传热进行了模拟,分析了磁场对绕流圆柱尾迹和涡分离的影响,获得了两种雷诺数下的电磁力密度、流场和温度场分布。结果表明,磁场不仅影响了流动的形态,而且对湍流有抑制作用,降低了自由表面的更新机制,从而减少了传热能力;在相同的Hartmann数下,相比低雷诺数下的流动换热情况,高雷诺数下的湍流不能被完全抑制,自由表面与尾迹的相互作用也较强,因而自由表面换热也较强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号