首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single crystals of gadolinium orthosilicate Gd2SiO5 containing 0.5 at% and 5 at% of Sm3+ were grown by the Czochralski method. Optical absorption spectra, luminescence spectra and luminescence decay curves were recorded for these systems at 10 K and at room temperature. Comparison of optical spectra recorded in polarized light revealed that the anisotropy of this optically biaxial host affects the intensity distribution within absorption and emission bands related to transitions between multiplets rather than the overall band intensity. It has been found that among four bands of luminescence related to the 4G5/26HJ (J=5/2–11/2) transitions of Sm3+ in the visible and near infrared region the 4G5/26H7/2 one has the highest intensity with a peak emission cross section of 3.54×10−21 cm2 at 601 nm for light polarized parallel to the crystallographic axis c of the crystal. The luminescence decay curve recorded for Gd2SiO5:0.5 at% Sm3+ follows a single exponential time dependence with a lifetime 1.74 ms, in good agreement with the 4G5/2 radiative lifetime τ rad=1.78 ms calculated in the framework of Judd-Ofelt theory. Considerably faster and non-exponential luminescence decay recorded for Gd2SiO5:5 at% Sm3+ sample was fitted to that predicted by the Inokuti-Hirayama theory yielding the microparameter of Sm3+–Sm3+ energy transfer C da=1.264×10−52 cm6×s−1.  相似文献   

2.
The absorption spectra, fluorescence spectrum and fluorescence decay curve of Nd3+ ions in CaNb2O6 crystal were measured at room temperature. The peak absorption cross section was calculated to be 6.202×10−20 cm2 with a broad FWHM of 7 nm at 808 nm for E//a light polarization. The spectroscopic parameters of Nd3+ ions in CaNb2O6 crystal have been investigated based on Judd-Ofelt theory. The parameters of the line strengths Ω t are Ω 2=5.321×10−20 cm2,Ω 4=1.734×10−20 cm2,Ω 6=2.889×10−20 cm2. The radiative lifetime, the fluorescence lifetime and the quantum efficiency are 167 μs, 152 μs and 91%, respectively. The fluorescence branch ratios are calculated to be β 1=36.03%,β 2=52.29%,β 3=11.15%,β 4=0.533%. The emission cross section at 1062 nm is 9.87×10−20 cm2.  相似文献   

3.
The vibration frequencies of unstable ferroelectric and antiferrodistortion modes and the dependences of the energy on the ion displacement amplitude have been calculated within the generalized Gordon-Kim model for distortions along eigenvectors of these modes in the mixed compounds Sr1 − x A x Ti1 − x /4 x/4O3 and Sr1 − y A 2y /3 y/3TiO3 (A = Sc3+, In3+, La3+, Bi3+; □ is the vacancy). To compensate an excess positive charge, vacancies are introduced into the Ti4+ or Sr2+ site. Calculations have been performed in the “daverage” crystal approximation for impurity concentrations of 0.25 and 0.50. To this end, a set of 40 atomic superlattices with various orderings of heterovalent ions Sr2+ and impurity A 3+ has been considered. It has been found that each impurity type, independently of charge balance, induces ferroelectric instabilities in doped compounds. In the case of doping with In3+ and La3+ for concentration x = 0.25, the possibility of rotating the polarization vector has been shown.  相似文献   

4.
The specific features of the crystal structure and the magnetic state of stoichiometric lithium manganite in the structurally ordered Li[Mn2]O4 and disordered Li1 − δMnδ[Mn2 − δLiδ]O4 (δ = 1/6) states have been investigated using neutron diffraction, X-ray diffraction, and magnetic methods. The structurally disordered state of the manganite was achieved under irradiation by fast neutrons (E eff ≥ 1 MeV) with a fluence of 2 × 1020 cm−2 at a temperature of 340 K. It has been demonstrated that, in the initial sample, the charge ordering of manganese ions of different valences arises at room temperature, which is accompanied by orthorhombic distortions of the cubic spinel structure, and the long-range antiferromagnetic order with the wave vector k = 2π/c(0, 0, 0.44) is observed at low temperatures. It has been established that the structural disordering leads to radical changes in the structural and magnetic states of the LiMn2O4 manganite. The charge ordering is destroyed, and the structure retains the cubic symmetry even at a temperature of 5 K. The antiferromagnetic type of ordering transforms into ferrimagnetic ordering with local spin deviations in the octahedral sublattice due to the appearance of intersublattice exchange interactions.  相似文献   

5.
Pure LiMn2O4 and lithium manganese oxide spinels with partial replacement of manganese by cobalt up to 20 mole%, LiCoxMn2−xO4, were prepared. The effect of extended cycling on the crystal structure was investigated. A capacity decrease with increasing cobalt content was observed in the potential range about 4100 mV vs. Li/Li+. Cycling behavior is significantly improved, compared to LiMn2O4. LiCoxMn2−xO4 is discharged in a single phase reaction in the upper potential range around 4100 mV vs. Li/Li+, whereas pure LiMn2O4 shows a two phase behavior. LiMn2O4 shows a significant broadening of peaks in plots of differential capacity and change in shape of the voltage profile upon extended cycling. LiCoxMn2−xO4 shows neither broadening nor change. Voltage profiles and plots of the differential capacity differ significantly compared to spinels with lithium substitution, Li1+xMn2−xO4. In contrast to Li1+xMn2-xO4, LiCoxMn2-xO4 is discharged in a two step process in the range of 0 ≤ × ≤ 0,5. Paper presented at the 3rd Euroconference on Solid State Ionics, Teulada, Sardinia, Italy, Sept. 15–22, 1996  相似文献   

6.
This paper reports on the spectroscopic properties and energy transfer analysis of Tm3+-doped BaF2-Ga2O3-GeO2-La2O3 glasses with different Tm2O3 doping concentrations (0.2, 0.5, 2.0, 2.5, 3.0, 3.5, 3.5, 4.0 wt%). Mid-IR fluorescence intensities in the range of 1,300 nm−2,200 nm have been measured when excited under an 808 nm LD for all the samples with the same pump power. Energy level structure and Judd-Ofelt parameters have been calculated based on the absorption spectra of Tm3+, cross-relaxation rates and multi-phonon relaxation rates have been estimated with different Tm2O3 doping concentrations. The maximum fluorescence intensity at around 1.8 μm has been obtained in Tm2O3-3 wt% sample and the maximum value of calculated stimulated emission cross-section of Tm3+ in this sample is about 0.48 × 10−20 cm2 at 1,793 nm, and there is not any crystallization peak in the DSC curve of this sample, which indicate the potential utility of Tm3+-doped BaF2-Ga2O3-GeO2- La2O3 glass for 2.0-μm optical fiber laser.  相似文献   

7.
The preparation of (La9.33−2x/3Sr x 0.67−x/3)Si6O24O2 (0 ≤ x ≤ 2) samples with different amounts of cation vacancies is reported. Structure and unit-cell parameters were deduced by Rietveld analysis of XRD patterns. Structural features that enhance oxygen conductivity in Sr-doped apatites are discussed. Up to three components were detected in 29Si MAS-NMR spectra which change with the amount and distribution of cation vacancies. In general, oxygen conductivity increases with the amount of vacancies at La1 (6h) sites, passing through a maximum for x = 0.4. In the case of activation energy, a minimum is detected near x = 1.2, indicating that entropic and enthalpic change in different ways. The presence of cation vacancies should enhance oxygen hopping along c-axis; however, the analysis of the frequency dependence of conductivity suggests that oxygen motions are produced along three axes.  相似文献   

8.
Nanoparticles of the pure and Ni–Cr co-doped lithium manganese oxides Li[NixCryMn2-x-y]O4 (x = y = 0.01–0.05) have been synthesized by sol–gel method using citric acid as a chelating agent. The effect of low-content doping was noted reflecting the faster ionic movement in the cathode material. The phase structure and morphology of the materials are characterized by XRD, FTIR, SEM and TEM. Electrochemical and impedance measurements established that low-content Ni–Cr substitution substantially improves the structural stability and high rate cycling performance of LiMn2O4. Among all the investigated compositions, LiNi0.01Cr0.01Mn1.98O4 demonstrated the best electrochemical performance. At a substantially high current rate of 5 C, 82% of the initial discharge capacity at 0.1 C is retained. Remarkably, after deep cycling at high rates, a discharge capacity of 104 mAhg?1 is resumed upon reducing the current rate to 0.1 C which is 91% of the specific capacity in the first cycle.  相似文献   

9.
The ferrimagnetic compounds Ca(CuxMn3?x)Mn4O12 of the double distorted perovskites AC3B4O12 family exhibit a rapid increase of the ferromagnetic component in magnetization at partial substitution of square coordinated (Mn3+)C for (Cu2+)C. In the transport properties, this is seen as a change of the semiconducting type of resistivity for the metallic one. The evolution of magnetic properties of Ca(CuxMn3?x)Mn4O12 is driven by strong antiferromagnetic exchange interaction of (Cu2+)C with (Mn3+/Mn4+)B coordinated octahedra. The competing interactions of (Mn3+)C with (Mn3+/Mn4+)B lead to the formation of noncollinear magnetic structures that can be aligned by magnetic fields.  相似文献   

10.
AMn3V4O12 (A = Ca, Ce, and Sm) compounds with a perovskite structure are synthesized at high pressures and temperatures. The crystalline structure of these compounds (space group \(Im\bar 3\)Z = 2) is determined via X-ray analysis. If ions in the A sublattice are changed in the order Ca2+–Sm3+–Ce3+, the valence is redistributed from Ca2+Mn32+V44+O12 to Sm3+Mn32+V43.75+O12, and to Ce3+Mn32+V43.75+O12. The temperature dependences of the electrical resistivity are studied.  相似文献   

11.
Preparing spherical particles with carbon additive is considered as one effective way to improve both high rate performance and tap density of Li4Ti5O12 and LiFePO4 materials. Spherical Li4Ti5O12/C and LiFePO4/C composites are prepared by spray-drying–solid-state reaction method and controlled crystallization–carbothermal reduction method, respectively. The X-ray diffraction characterization, scanning electron microscope, Brunauer–Emmett–Teller, alternating current impedance analyzing, tap density testing, and electrochemical property measurements are investigated. After hybridizing carbon with a proper quantity, the crystal grain size of active materials is remarkably decreased and the electrochemical properties are obviously improved. The Li4Ti5O12/C and LiFePO4/C composites prepared in this work are spherical. The tap density and the specific surface area are as high as 1.71 g cm−3 and 8.26 m2 g−1 for spherical Li4Ti5O12/C, which are 1.35 g cm−3 and 18.86 m2 g−1 for spherical LiFePO4/C powders. Between 1.0 and 3.0 V versus Li, the reversible specific capacity of the Li4Ti5O12/C is more than 150 mAh g−1 at 1.0-C rate. Between 2.5 and 4.2 V versus Li, the reversible capacity of the LiFePO4/C is close to 140 mAh g−1 at 1.0-C rate.  相似文献   

12.
Mn-doped ZnGa2O4-xSx thin-film phosphors have been grown using a pulsed laser deposition technique at varying growth conditions. Structural characterization was carried out on a series of ZnGa2O4-xSx:Mn2+ films grown on MgO(100) substrates using Zn-rich ceramic targets. Oxygen pressure was fixed at 100 mTorr and substrate temperatures were varied from 500 to 700 °C. The results of X-ray-diffraction patterns showed that the lattice constants of the ZnGa2O3.95S0.05:Mn2+ thin films decrease with the substitution of sulfur for the oxygen in ZnGa2O4. Measurements of photoluminescence (PL) properties of ZnGa2O4-xSx:Mn2+ thin films have indicated that MgO(100) is one of the most promising substrates for the growth of high-quality ZnGa2O4-xSx:Mn2+ thin films. In particular, the incorporation of sulfur into the ZnGa2O4 lattice could induce a remarkable increase of PL. The highest green-emission intensity was observed with ZnGa2O3.95S0.05:Mn2+ films, whose brightness was increased by a factor of 3.5 in comparison with that of ZnGa2O4:Mn2+ films. This phosphor may be promising for application to flat-panel displays. PACS 78.20.-e; 78.55.-m; 78.66.-w  相似文献   

13.
By employment of nano-sized pre-prepared Mn3O4 as precursor, LiMn2O4 particles have been successfully prepared by facile solid state method and sol-gel route, respectively. And the reaction mechanism of the used precursors of Mn3O4 is studied. The structure, morphology, and element distribution of the as-synthesized LiMn2O4 samples are characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). Compared with LiMn2O4 synthesized by facile solid state method (SS-LMO), LiMn2O4 synthesized by modified sol-gel route (SG-LMO) possesses higher crystallinity, smaller average particle size (~175 nm), higher lithium chemical diffusion coefficient (1.17 × 10?11 cm2 s?1), as well as superior electrochemical performance. For example, the cell based on SG-LMO can deliver a capacity of 85.5 mAh g?1 at a high rate of 5 °C, and manifests 88.3% capacity retention after 100 cycles at 0.5 °C when cycling at 45 °C. The good electrochemical performance of the cell based on SG-LMO is ascribed mainly to its small particle size, high degree of dispersion, and uniform element distribution in bulk material. In addition, the lower polarization potential accelerates Li+ ion migration, and the lower atom location confused degree maintains integrity of crystal structure, both of which can effectively improve the rate capability and cyclability of SG-LMO.  相似文献   

14.
The Ba0.4Sr0.6−x Mn x TiO3 (BSMT) ceramics with different Mn composition (from 1% to 10%) have been prepared via the conventional solid-state reaction sintering. The X-ray diffraction analysis shows that the ceramics are polycrystalline with the single perovskite phase. The lattice vibrations and optical properties have been investigated using Raman scattering, spectroscopic ellipsometry (SE), and infrared reflectance spectra. It was found that the optical bandgap for the BSMT ceramics is varied between 3.40 and 3.65 eV. The three first-order Raman-active phonon modes can be observed, and the frequency of the A 1(LO3)/E(LO) mode shows a blue shift of 8 cm−1 with the Mn composition, which can be attributed to the distortion of the TiO6 octahedron. With increasing Mn composition, the frequency of the infrared-active TO4 mode decreases from 532 to 520 cm−1, owing to the local variation of the lattice constant induced by the Mn incorporation. Moreover, the optical functions of the ceramics from the far-infrared to ultraviolet region are obtained based on the SE and reflectance spectra, which is useful for the potential applications in ferroelectric-based optoelectronic devices.  相似文献   

15.
The nonlinear optical properties in six Cr3+-doped laser crystals LiCaAlF6, LiSrGaAlF6, Gd3Ga5O12, Gd3Sc2Ga3O12, LaMgAl11O19 and Alexandrite are investigated with the help of the Z-Scan technique at λ = 532 nm in the CW regime. The data reported here include particularly the excited state absorption cross section and the third-order nonlinear susceptibilities. It is found that the three first systems only exhibit both refractive and absorptive nonlinear effects, whereas the three others have only absorptive effects. Gd3Ga5O12 shows the best nonlinear potentialities. The excited state absorption cross section corresponding mainly to the 4T2  4T1 transition is found to be ranging between 8.9 × 10−22 cm2 in LiSGaF and 3.1 × 10−20 cm2 in LaMgAl11O19. The calculated ratio of the third order nonlinear susceptibility to the ground state absorption coefficient is found to be largest in GGG with a value of 146 × 10−6 esu.cm and smallest in Alexandrite (0.6 × 10−6 esu.cm).  相似文献   

16.
Olivine LiFePO4 using organic acid as a reducing agent has been synthesized utilizing a solid-state method. Samples were characterized by an X-ray diffraction and a scanning electron microscope. The single-phase LiFePO4 and small grain size of the crystallite were obtained without the use of a carbon-coating process. In such LiFePO4 powder, the initial specific capacity was 142 mAhg−1 at a current rate of 0.1 C. After the 50th cycle test, the reversible specific capacity was 132 mAhg−1 at a 2 C rate, showing a retention ratio to the initial capacity as 98.4%.  相似文献   

17.
The α-Zn2P2O7 compound was obtained by conventional solid-state reaction. The sample was characterized by X-ray powder diffraction, solid state 31P NMR MAS, and electrical impedance spectroscopy. The solid state 31P MAS NMR, performed at 121.49 MHz, shows three isotropic resonances at −21.1, −18.8, and −15.8 ppm, confirming the non-equivalency of the three PO4 groups in the α-Zn2P2O7 form. They are characterized by different chemical shift tensor parameters with the local geometrical features of the tetrahedra. Electrical impedance measurements of β-Zn2P2O7, form stable for temperature greater than 403 K, were performed as a function of both temperature and frequency. The electrical conduction and dielectric relaxation have been studied. The AC conductivity obeys the universal power law. The approximation type correlated barrier hopping model explains the universal behavior of the n exponent. The impedance plane plot shows semicircle arcs at different temperatures, and an electrical equivalent circuit has been proposed to explain the impedance results. The circuits consist of the parallel combination of bulk resistance R p and constant phase elements CPE. The simulated spectra show a good correlation with the experimental data.  相似文献   

18.
A new member of the family of garnets with fast lithium ion conduction has been found with the composition Li7La3Hf2O12. The anion arrangement corresponds to the oxygen framework in garnets, e.g., in Ca3Fe2Si3O12. Hafnium is coordinated octahedrally while the lanthanum environment can be described as a distorted cube. Lithium occupies a large number of positions with tetrahedral, trigonal planar, and metaprismatic coordination. Li7La3Hf2O12 shows a lithium bulk ion conductivity of 2.4 × 10−4 Ω−1 cm−1 at room temperature with an activation energy of 0.29 eV.  相似文献   

19.
The Sm3+ ion in the Cs2NaYF6 single crystal was studied by optically detected electron paramagnetic resonance spectroscopy. Magnetic resonance signals were recorded by Faraday rotation at the frequency of 0.6–0.85 GHz and magnetic fields of about 0.14 T. The hyperfine parameters of 147Sm3+ and 149Sm3+ isotopes were determined.  相似文献   

20.
Yurong Zhang  Yanyan Zhao 《Ionics》2011,17(5):457-461
Li0.94Mg0.03MnPO4/C composite cathode materials for lithium ion battery with different carbon contents are synthesized by sol–gel method followed by heat treatment in the air. Environmental scanning electron microscopy measurements show that both firing temperature and carbon content affect the morphology of the end products. X-ray powder diffraction analysis indicates that the samples are olivine-structured. The galvanostatic charge–discharge results show that the optimal firing temperature registers 400 °C and that the electrochemical performances of Li0.94Mg0.03MnPO4/C are improved by elevating its carbon amount. The sample with an initial conductive carbon content of 20 wt.% gives the best performances; when tested at the rate of 0.02C, 0.1C, and 1.0C between 2.8 and 4.4 V, its initial discharge capacity reaches 145.8, 103.0, and 72.8 mAhg−1, respectively, and maintains at 100.1, 77.6, and 65.4 mAhg−1, respectively, after 100 cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号