首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
漂移对聚焦高斯光束闪烁影响的数值模拟   总被引:2,自引:2,他引:2       下载免费PDF全文
 采用非自适应坐标变换对聚焦高斯光束在湍流大气中的传输进行了数值模拟,结果显示轴闪烁指数并没有出现如Rytov理论所预言的随初始光束半径的增大而明显减小的现象,其原因在于Rytov近似理论未考虑大尺度湍涡产生的漂移效应对闪烁的贡献。对比数值模拟结果与漂移理论结果以及相关实验结果,三者相吻合,表明未考虑漂移效应的Rytov近似理论不能完全准确地描述聚焦光束的闪烁特征,在研究聚焦光束的闪烁时,应当考虑漂移的影响。  相似文献   

2.
高斯波束在湍流大气斜程传输中的闪烁问题研究   总被引:8,自引:4,他引:4  
根据光波斜程传输理论以及随高度变化的ITU-R湍流大气结构常数模型,将水平传输的修正里托夫方法推广到了斜程传输问题中。导出了高斯波束入射时,在零内尺度湍流谱模型及考虑湍流内尺度效应和外尺度效应条件下,从弱起伏湍流区到强起伏湍流区闪烁指数随斜程里托夫方差变化的计算公式。讨论了不同传播高度、不同湍流内、外尺度对高斯波束斜程传输闪烁指数的影响。最后将有关数值计算结果与实验测量结果进行了比较和验证。  相似文献   

3.
 在城市环境下进行了3.5 km的激光大气传输实验。实验中对光强起伏和到达角起伏进行了同步测量,分析了接收光强起伏的统计特性以及传输路径上大气折射率结构常数的特性。基于实验结果,对自由空间光通信中不同闪烁指数下的衰落冗余以及不同探测阈值下的衰落概率进行了估算,从而为空间光通信系统的设计提供可靠的实验基础。  相似文献   

4.
Satellite laser communication holds the potential for high-bandwidth communication, but the atmosphere can significantly affect the capability of this type of communication systems for satellite-toground and ground-to-satellite data links to transfer information consistently and operate effectively. Usually the influence of atmosphere on satellite laser communication is investigated based on the Kolmogorov turbulence model. However, both increasing experimental evidence and theoretical investigations have shown that the Kolmogorov theory is sometimes incomplete to describe the atmospheric statistics properly, in particular, in some portions of the atmosphere. Considering a non-Kolmogorov turbulent power spectrum with power law 5 that describes the refractive-index fluctuations in the atmosphere above 6 km, we calculate the scintillation index of a lowest-order Gaussian-beam wave under the weak-fluctuation condition. Then, considering a combined power spectrum of refractiveindex fluctuations and using the expression obtained, we analyze the joint influence of the Kolmogorov turbulence from the ground to 6 km and non-Kolmogorov turbulence above 6 km on the scintillation indices of laser beams used in ground-to-satellite and satellite-to-ground laser communication links. We show that the scintillation index in satellite laser communication is equal to the sum of the scintillation indices induced by the Kolmogorov turbulence from ground to 6 km and that caused by the non-Kolmogorov turbulence above 6 km. Also we investigate variations of the scintillation index with the beam radius on the transmitter, wavelength, the radial distance, and zenith angle. Finally, comparing the scintillation index induced by these two turbulences with the conventional results, we show that the scintillation index induced by these two turbulences is a bit smaller than the conventional results.  相似文献   

5.
激光在湍流大气中传输的闪烁系数及其测量   总被引:1,自引:1,他引:0       下载免费PDF全文
 理论研究了激光光束经过湍流大气后闪烁系数的变化规律,以ARM7的嵌入式系统构建数据采集模块,在采集激光光强因为大气湍流影响而变化的数据的基础上对存储的数据使用闪烁系数数学模型进行运算,运算结果通过网络传输,由PC端的界面显示变化曲线,从而了构造一个可以感测大气湍流的远程探测系统。用转动的相位板模拟湍流大气,利用所开发的测试系统测量激光光束通过湍流大气后的闪烁系数。实验结果显示高斯光束在湍流大气中的闪烁系数随传输距离的增加而增大,与理论模拟结果基本相符。由此可见该系统工作可靠稳定,可实时测量激光光束经过湍流大气的闪烁系数。  相似文献   

6.
 采用分形理论分析了激光大气闪烁的统计特征。研究结果表明:在弱起伏条件下,激光大气闪烁的分形维和奇异性随光强起伏的增强而增大,而其长期相关性则减小;不同Fresnel尺度下具有相同闪烁指数的激光大气闪烁的分形特征存在着明显的差别;在强起伏条件下,有限的数据中尚未发现分形维有饱和现象,因此可以用来描述激光大气闪烁的强度。  相似文献   

7.
Based on the theory of optical wave propagation in the slant path and the ITU-R turbulence structure constant model which is altitude dependent, the modified Rytov method, which is applicable to the optical wave propagation in the horizontal path, is extended to the propagation in the slant path. According to the spectrum model with non-zero inner scale, the scintillation index as a function of the Rytov variance is obtained from weak to strong fluctuation regions with plane wave and sphere wave incidence, respectively. Finally, the scintillation index with different zenith angles is analyzed, and comparison between the results of the modified method and experimental measurements is given and discussed in detail.  相似文献   

8.
采用广义惠更斯-菲涅耳原理和矩阵光学理论,研究了湍流大气中偏振部分相干激光波束从发射机到目标和从目标到接收机双程路径的闪烁特性。将产生任意偏振光束的琼斯矩阵和ABCD传输矩阵进行结合,围绕接收机处波场四阶矩展开推导,得出双程路径下偏振部分相干激光波束在接收机处的闪烁指数表达式,数值分析了大气折射率结构常数、激光波束的波长、束宽、相干长度对接收机处光强闪烁指数的影响。结果表明:偏振部分相干激光波束的闪烁指数随着目标与发射机之间距离呈现先增大、到达峰值后逐渐减小的变化趋势;相干性差的光束产生的闪烁指数小,相干长度微小的变化将会产生较大的闪烁指数变化,相干性好的光束产生较大的闪烁指数,但是相干长度的变化对闪烁指数的影响很小。  相似文献   

9.
A theory and experimental results for sound propagation through an anisotropic shallow water environment are presented to examine the frequency dependence of the scintillation index in the presence of internal waves. The theory of horizontal rays and vertical modes is used to establish the azimutal and frequency behavior of the sound intensity fluctuations, specifically for shallow water broadband acoustic signals propagating through internal waves. This theory is then used to examine the frequency dependent, anisotropic acoustic field measured during the SWARM'95 experiment. The frequency dependent modal scintillation index is described for the frequency range of 30-200 Hz on the New Jersey continental shelf.  相似文献   

10.
The on-axis scintillation index for a circular dark hollow beam (DHB) propagating in a weak turbulent atmosphere is formulated, and the scintillation properties of a DHB are investigated in detail. The scintillation index for a DHB reduces to the scintillation index for a Gaussian beam, an annular beam and a flat-topped beam under certain conditions. It is found that the scintillation index of a DHB is closely related to the beam parameters and can be lower than that of a Gaussian beam, an annular beam and a flat-topped beam in a weak turbulent atmosphere at smaller waist sizes and longer propagation lengths. PACS 42.25.Bs; 42.68.Ay  相似文献   

11.
Abstract

A scintillation model previously developed by the authors is extended in this paper to the case of a propagating Gaussian-beam wave. As in the previous model, we account for the loss of spatial coherence as the optical wave propagates through atmospheric turbulence by eliminating effects of certain turbulent scale sizes that exist between the scale size of the spatial coherence radius of the beam and that of the scattering disc. These mid-range scale-size effects are eliminated through the formal introduction of spatial frequency filters that continually adjust spatial cut-off frequencies as the optical wave propagates. Unlike the previous model, in this paper we include the effect of a finite outer scale in addition to the inner scale. With a finite outer scale, the scintillation index can be substantially lower in strong turbulence than that predicted by a model with an infinite outer scale. This particular behaviour of scintillation in strong turbulence, mostly associated with horizontal paths near the ground, cannot be explained on the basis of previous expressions deduced from the asymptotic theory. Comparisons of the scintillation models with published experimental and simulation data through weak and strong irradiance fluctuations show excellent fits.  相似文献   

12.
A general expression of the scintillation index is proposed for optical wave propagating in turbulent atmosphere under arbitrary fluctuation conditions. The expression depends on extreme behaviors of the scintillation indices under both weak and strong fluctuations. The maximum scintillation index in the onset region and the corresponding Rytov index can be evaluated from the general expression. Plane and spherical waves in the cases of zero and non-zero turbulence inner scale are given as examples for illustration of the general behaviors of scintillation indices.  相似文献   

13.
The Rytov perturbation method can be used to derive analytic expressions governing statistical quantities of an optical wave propagating through the Earth's atmosphere. It is generally accepted that the validity of these expressions is restricted to the weak fluctuation regime, and that the wave structure function for plane and spherical waves obtained via the Rytov method is valid in all fluctuation regimes, for sufficiently small separation distances. Data from experimental results for the wave structure function as a function of the fluctuation strength for a fixed value of the separation distance indicate that the Rytov method does not accurately model the behaviour of the wave structure function in moderate to strong fluctuation regimes. This is similar to what is observed for the scintillation index. Recently, however, it was shown that the integral definition of the scintillation index obtained via the Rytov perturbation yields analytic expressions that are valid in all fluctuation regimes when a filter function is applied to the atmospheric spectrum. The underlying physical theory is that as the wave propagates, intermediate refractive index scale sizes fail to refract or diffract the beam. Hence, these scale sizes do not contribute to the scintillation index. In this paper, we investigate the results of applying this concept to the wave structure function. Specifically, we apply a filter function to the atmospheric spectrum and develop analytic expressions for the wave structure function for plane, spherical and Gaussian beam waves using the Rytov perturbation method. It is shown that in weak fluctuations these expressions yield similar results to standard expressions obtained where no filter function is applied. However, in moderate to strong fluctuations, these new expressions predict a decrease in the value of the wave structure function as compared to the standard expressions, following the trend of the experimental data presented by Gurvich.

(Some figures in this article are in colour only in the electronic version)  相似文献   

14.
Linyan Cui  Lei Cao 《Optik》2013,124(24):6684-6689
The turbulence inner scale plays an important role in investigating the irradiance scintillation index for optical wave propagating through atmospheric turbulence. However, previous expressions of the irradiance scintillation index, which were derived based on the general non-Kolmogorov spectral model, did not consider the influences of finite turbulence inner scale. In this study, based on the generalized exponential spectral model for non-Kolmogorov atmospheric turbulence, theoretical expressions of the irradiance scintillation index are derived for plane and spherical optical waves propagating through weak turbulence. The new expressions have considered the influences of the finite turbulence inner scale and the receiver aperture on the irradiance scintillation index. Numerical simulations are performed to analyze these parameters’ influences.  相似文献   

15.
Min Yao 《Optik》2009,120(16):824-828
The scintillation properties of astigmatic annular beams in a weak turbulent atmosphere are investigated. Expression for the on-axis scintillation index of an astigmatic annular beam is derived. It is found that the scintillation index of an astigmatic annular beam can be smaller than that of a Gaussian beam, an elliptical Gaussian beam and a stigmatic annular beam in a weak turbulent atmosphere under certain conditions. The scintillation properties of astigmatic annular beams are closely controlled by its beam parameters.  相似文献   

16.
The analytical expression for scintillation index of radial Gaussian beam array with coherent combination based on Kolmogorov power-law spectrum in the horizontal path is derived. The influences of the beam number and ring radius on the scintillation index are studied. The results show that the scintillation index can be reduced by increasing beam number and an optimum ring radius is proved to exist. Further, the optimum ring radius greatly depends on the source size and exists only in a certain range of the source size determined by the propagating distance. Additionally, the scintillation index distributions at the receiver greatly depend on the source size.  相似文献   

17.
The scintillation index of a Gaussian Schell-model beam with twist phase (i.e., twisted GSM beam) in weak turbulent atmosphere is formulated with the help of a tensor method. Variations of the scintillation index of a twisted GSM beam on propagation in turbulent atmosphere are studied in detail. It is interesting to find that the scintillation index of a twisted GSM beam can be smaller than that without twist phase in weak turbulent atmosphere. Thus, modulation of the twist phase of a partially coherent beam provides a new way to reduce turbulence-induced scintillation.  相似文献   

18.
探测大气湍流的光强闪烁激光雷达   总被引:2,自引:0,他引:2       下载免费PDF全文
基于残余光强闪烁理论,分析了与大气湍流探测有关的激光雷达各项硬件参数并获得参数的优化范围,据此研制了一台用于大气湍流探测的光强闪烁激光雷达。背景基线、线性特征等性能测试表明,激光雷达各硬件工作正常,数据获取可靠。实验测量中获得了水平方向上闪烁指数和大气折射率结构常数随探测距离和时间的变化趋势,其中闪烁指数在450~2000 m探测距离范围内由0.001逐渐增大至0.350左右;大气折射率结构常数基本保持水平均匀性,在1.010-16~1.010-15m-2/3范围之内;大气折射率结构常数在10:00~21:00时间内大致呈现上午上升、下午下降、晚上上升的变化趋势,具有较明显的日变化特征。实验结果与理论和常规测量较为相符,表明光强闪烁激光雷达能够获取大气湍流的探测距离变化和日变化特征信息。  相似文献   

19.
实际大气中激光强度起伏的全年统计特征   总被引:5,自引:2,他引:3  
对实际湍流大气中的激光强度起伏了系统的实验观测,详细分析了光强起伏的强度概率密度分布与功率谱的统计特征及春周日,全年变化规律。同时分析了探测器件的饱和铲应结果的影响。  相似文献   

20.
根据光波斜程传输理论以及随高度变化的ITU-R大气折射率结构常数模型,考虑内尺度及从发射机到目标和从目标到接收机双斜程路径影响的条件下,应用修正Hill湍流折射率起伏功率谱,对反射器目标激光回波闪烁指数进行了研究。推导了回波闪烁指数随菲涅耳率的变化关系,数值分析了不同内尺度、传输距离、激光波长以及目标高度对回波闪烁指数的影响。结果表明:内尺度和目标高度对回波闪烁指数的影响要远大于波长和传输距离的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号