首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
The electronic, optical and bonding properties of MgCO3 (magnesite, rhombohedral calcite-type structure) are calculated using a first-principles density-functional theory (DFT) method considering the exchange-correlation function within the local density approximation (LDA) and the generalized gradient approximation (GGA). The indirect band gap of magnesite is estimated to be 5.0 eV, which is underestimated by ~1.0 eV. The fundamental absorption edge, which indicates the exact optical transitions from occupied valence bands to the unoccupied conduction band, is estimated by calculating the photon energy dependent imaginary part of the dielectric function using scissors approximations (rigid shift of unoccupied bands). The optical properties show consistent results with the experimental calcite-type structure and also show a considerable optical anisotropy of the magnesite structure. The density of states and Mulliken population analyses reveal the bonding nature between the atoms.  相似文献   

2.
The physical properties of the new cubic phase of Hf3N4 as well as of isomorphic Zr3N4 and Ti3N4 are studied using first-principles calculations. Hf3N4, Zr3N4, and Ti3N4 are semiconductors with band gaps of 1.8, 1.1, and 0.6 eV, respectively. The band structure is characterized by the simultaneous presence of steep and extremely flat bands. The calculated shear modulus G indicates that the cubic Hf3N4 will be harder than the mononitride HfN. At ambient conditions, the cubic modifications of M3N4 (M=Hf, Zr, Ti) are metastable with respect to orthorhombic M3N4 phases, but the orthorhombic phases of Hf3N4 and Zr3N4 are stable with respect to the mononitrides and nitrogen.  相似文献   

3.
In order to clarify the mechanism of optical transitions for cubic SrHfO3, we have investigated the electronic structure and optical properties of cubic SrHfO3 using the plane-wave ultrasoft pseudopotential technique based on the first-principles density-functional theory (DFT). The ground-state properties, obtained by minimizing the total energy, are in favorable agreement with the previous work. From the band structure and charge densities as well as the theory of crystal-field and molecular-orbital bonding, we have systematically studied how the optical transitions are affected by the electronic structure and molecular orbitals. Our calculated complex dielectric function is in good agreement with the experimental data and the optical transitions are in accord with the electronic structure.  相似文献   

4.
通过运用基于密度泛函理论的第一性原理计算方法结合广义梯度近似对压力下CaN_2的结构稳定性和电子结构进行了理论研究.对结构稳定性的研究表明,ZnCl_2型结构是CaN_2在环境压力下最稳定的结构,而实验上观察到的CaC_2-I型结构是CaN_2高压下(8.7 GPa)的稳定性结构.在50 GPa的压力范围内,CaN_2将发生从ZnCl_2型结构到ThC_2型结构再到CaC_2-I型结构的两次压致结构相变,其相变压力分别为0.81 GPa和8.77 GPa.而对电子结构的研究表明ZnCl_2型、ThC_2型和CaC_2-I型三种结构的CaN_2都表现出了金属特征,三种结构CaN_2当中Ca-N键的离子-共价性特征和N原子间的N=N双键特征得到了确认.  相似文献   

5.
The electronic and optical properties of andalusite were studied by using quantum-mechanical calculations based on the density functional theory (DFT). The electronic structure shows that andalusite has a direct band gap of 5.01 eV. The complex dielectric function and optical constants, such as extinction coefficient, refractive index, reflectivity and energy-loss spectrum, are calculated. The optical properties of andalusite are discussed based on the band structure calculations. It is shown that the O-2p states and Al-3s states play a major role in optical transitions as initial and final states, respectively.  相似文献   

6.
MgCNi3的电子结构、光学性质与超导电性   总被引:3,自引:0,他引:3       下载免费PDF全文
用第一性原理的密度泛函能带计算方法研究了新近发现的超导体MgCNi3的电子能带结构.计算结果表明其电子结构的基本特征是:Ni的3d态和C的2p态的杂化组成了MgCNi3的导带,费米面附近的物理性质主要由来源于Ni的3d电子态决定.在费米能级(EF)以下30eV的范围内,Ni 3d态构成了能带色散微弱的密集电子态,EF恰好落在Ni 3dyz+zx和3d3z2-r2电子态密度.C 2p态分布在EF以下40—70eV的区域内,Mg主要是以二价离子Mg2+的形式存在.Mg原子的掺杂导致了Ni原子的3d态基本上全部占据,引起Ni原子磁矩的消失.费米能级EF处的态密度N(EF)是550(states/eV·cell),由此得到的Sommerfeld常数γeal~445mJ/mol·K2.基于第一性原理的光学性质的计算结果表明:在0—12eV的范围内光吸收主要是从占据的Ni 3d态向C 2p和Ni4s的跃迁.根据这些结果得出结论:MgCNi3的超导电性基本上是强耦合的BCS电子-声子作用机理. 关键词: MgCNi3 高温超导体 电子结构 光学性质  相似文献   

7.
李丹  张幸红 《中国物理 B》2011,20(12):126102-126102
We investigate the electronic structure of Ag2HgSnSe4 in a wurtzite-stannite structure with the first principles method. This crystal is a direct band-gap compound. In addition the dielectric function, absorption coefficient, reflectivity, and energy-loss function are studied using the density functional theory in the generalized gradient approximation. We discuss the optical transitions between the valence bands and the conduction bands in the spectrum of the imaginary part of the dielectric function at length. We also find a very high absorption coefficient and a wide absorption band for this material. The prominent structures in the spectra of reflectivity and the energy-loss function are discussed in detail.  相似文献   

8.
We investigate the electronic structure for Cu2CdGeSe4 in stannite structure with the first-principles method. This crystal is the direct band gap compound. In addition, the dielectric function, absorption coefficient, reflectivity, and energy-loss function are studied using the density functional theory within the generalized gradient approximation. We discuss the optical transitions between the valence bands and the conduction bands in the spectra of the imaginary part of the dielectric function at length. We also find a very high absorption coefficient and wide absorption spectrum for this material. The prominent structures in the spectra of reflectivity and energy-loss function are discussed in detail.  相似文献   

9.
First principles calculations were performed to investigate the electronic, optical and thermoelectric properties of Zintl orthorhombic phase AE3AlAs3 (AE?=?Sr, Ba) compounds using the full potential linearized augmented plane wave method. The exchange-correlation potential is treated with the generalized gradient approximation (GGA) and modified Becke-Johnson potential (TB-mBJ) to improve the electronic structure calculations. These two compounds are semiconductors have direct band gaps. The optical transitions are investigated via dielectric function along with other related optical constants such as refractive index and absorption coefficient. Thermoelectric properties are examined using the combination of electronic structure and Boltzmann transport theory. In detail, the calculated results of Seebeck coefficient, electrical and thermal conductivity, figure of merit and power factor are reported as a function of temperature.  相似文献   

10.
We have investigated the structural parameters, electronic structure and optical properties of orthorhombic SrZrO3 using the plane-wave ultrasoft pseudopotential technique based on the first-principles density-functional theory (DFT). Our calculated structural parameters are in good agreement with the previous theoretical and experimental data. Band structure, density of states and chemical bonding have been systematically studied. Furthermore, the complex dielectric function, refractive index, extinction coefficient, optical reflectivity, absorption coefficient, loss function and optical conductivity are calculated, which show an optical anisotropy in the components of polarization directions (100), (010) and (001).  相似文献   

11.
二维六方氮化硼(hBN)的点缺陷最近被发现可以实现室温下的单光子发射,而成为近年的研究热点.尽管其具有重要的基础和应用研究意义,hBN中发光缺陷的原子结构起源仍然存在争议.本文采用基于密度泛函理论的第一性原理计算,研究hBN单层中一种B空位附近3个N原子被C替代的缺陷(CN)3VB.在hBN的B空位处,3个N原子各自带一个在平面内的悬挂键及相应的未配对电子,而通过C替换可以消除未配对的电子.系统研究了(CN)3VB缺陷的几何结构、电子结构以及光学性质,结果表明,缺陷可以由一个对称的亚稳态经过原子结构弛豫变成1个非对称的、3个C原子连在一起的基态结构.缺陷的形成在hBN中引入了一些由缺陷悬挂σ键及重构的π键贡献的局域缺陷态.这些缺陷态可以导致能量阈值在2.58 eV附近的可见光内部跃迁.本文的工作有助于进一步理解hBN中点缺陷的构成及光学性质,为实验上探讨发光点缺陷的原子结构起源及其性质提供理论依据.  相似文献   

12.
First principles study of structural, elastic, electronic and optical properties of the cubic perovskite-type BaHfO3 has been reported using the pseudo-potential plane wave method within the local density approximation. The calculated equilibrium lattice is in a reasonable agreement with the available experimental data. The elastic constants and their pressure dependence are calculated using the static finite strain technique. A linear pressure dependence of the elastic stiffnesses is found. Band structures show that BaHfO3 is a direct band gap between the occupied O 2p and unoccupied Hf d states. The variation of the gap versus pressure is well fitted to a quadratic function. Furthermore, in order to understand the optical properties of BaHfO3, the dielectric function, absorption coefficient, optical reflectivity, refractive index, extinction coefficient, and electron energy loss are calculated for radiation up to 30 eV. We have found that O 2p states and Hf 5d states play a major role in the optical transitions as initial and final states, respectively. This is the first quantitative theoretical prediction of the elastic, electronic and optical properties of BaHfO3 compound, and it still awaits experimental confirmation.  相似文献   

13.
The first-principles calculations are performed within the density functional theory to investigate the crystal structure, energy band structure, density of states, optical properties, and bonding properties of strontianite. The optimized structure parameters and bonding results with the generalized gradient approximation (GGA) functional and the localized density approximation (LDA) functional are in good agreement with the earlier experimental data. The band structure, density of states and chemical bonding of strontianite have been calculated and analyzed. The indirect band gap of strontianite is estimated to be ~4.45 eV (GGA) or ~4.24 eV (LDA). The absorption, reflectivity, refractive index and extinction coefficient have been calculated using the imaginary part of the dielectric function. The calculated results of the optical properties show that strontianite has an optical anisotropy along [100] (or [010]) and [010] polarization directions of incoming light. Furthermore, the calculated results of the density of states and Mulliken population indicate that the interactions among atoms are both ionic and covalent bonding in strontianite.  相似文献   

14.
The electronic-energy band structure, site and angular momentum decomposed density of states (DOS) and charge-density contours of perovskite CaTiO 3 are calculated by the first principles tight-binding linear muffin-tin orbitals method with atomic sphere approximation using density functional theory in its local density approximation. The calculated band structure shows an indirect (R-Γ) band gap of 1.5 eV. The total DOS as well as the partial density of states (PDOS) are compared with the experimental photoemission spectra. The calculated DOS are in reasonable agreement with the experimental energy spectra and the features in the spectra are interpreted by a comparison of the spectra with the PDOS. The origin of the various experimentally observed bands have been explained. From the DOS analysis, as well as charge-density studies, we conclude that the bonding between Ca and TiO 3 is mainly ionic and that the TiO 3 entities bond covalently. Using the projected DOS and band structure we have analyzed the interband contribution to the optical properties of CaTiO 3 . The real and imaginary parts of the dielectric function and hence the optical constants such as refractive index and extinction coefficient are calculated. The calculated spectra are compared with the experimental results for CaTiO 3 and are found to be in good agreement with the experimental results. The effective number of electrons per unit cell participating in the interband transitions are calculated. The role of band structure calculation as regards the optical properties of CaTiO 3 is discussed. Received 1 February 2000 and Received in final form 21 July 2000  相似文献   

15.
The electronic structure and bonding properties of Laves-phase compounds RV2 (R=Ti, Nb, Hf, and Ta) with C15 structure have been investigated using the full-potential linearized augmented plane-wave method. The results show that the chemical bonding is metallic–ionic–covalent in nature in these compounds, and the covalent bonding between V and V atoms strengthens with the atomic number, increasing among the RV2 (R=Ti, Nb, Hf, and Ta) compounds. The density of states (DOS), equilibrium volume, and elastic properties are discussed, which is important for understanding the physical properties of RV2 (R=Ti, Nb, Hf, and Ta) and may inspire future experimental research.  相似文献   

16.
We investigated the high-energy electronic structure of a 5d perovskite SrHfO3 by using optical spectroscopy and O 1s x-ray absorption spectroscopy. From the combined spectra the values of electronic structure parameters are estimated properly. In particular, the crystal field splitting energy, which is closely associated with the p–d hybridization strength, is as high as ~5 eV, and the Sr 4d bands appear to be strongly mixed with the Hf 5d bands. These findings are discussed in relation to a possible ferroelectric instability in SrHfO3, and are compared with electronic properties of similar compounds, 3d SrTiO3 and 4d SrZrO3.  相似文献   

17.
采用基于密度泛函理论的赝势平面波第一性原理方法,理论研究了不同计量Ta掺入ZnNb2O6材料的光电特性。通过对ZnNb2-xTaxO6(x=0~2.0)材料键结构和态密度的计算,并结合带间电子跃迁分析了材料的介电函数、折射率、反射率以及吸收系数。计算结果显示:(1)ZnNb2-xTaxO6(x=0~2.0)为间接半导体,带隙随着Ta原子的掺入呈下降趋势(x=0,Eg=3.51eV;x=2,Eg=2.916eV),随着Ta掺入量的增加导带顶逐渐移向费米面。态密度主要由O2p、Zn3d、Nb4d、Ta5d轨道组成;(2)ZnNb2-xTaxO6(x=0~2.0)价电子态呈现为非对称,具有很强的局域性,对材料整体的电子结构和键特性有重要的影响;(3)介电函数的计算表明,ZnNb2-xTaxO6(x=0~2.0)材料各向异性,最大吸收峰在3.02×105cm-1附近,消光系数在带边表现出较强的吸收特性,进一步以带结构和态密度为出发点,探讨了电子带间跃迁的光电机理。该结果为研制高性能光电器件用新型功能材料提供了理论依据。  相似文献   

18.
采用基于密度泛函理论的第一性原理平面波超软赝势法,对Ag掺杂AlN 32原子超晶胞体系进行几何结构优化,计算并分析体系的电子结构、磁性和光学性质.结果表明:Ag掺杂后,Ag4d态电子与其近邻的N2p态电子发生杂化,引入杂质带形成受主能级,实现p型掺杂,使体系的导电能力增强,同时表现出金属性和弱磁性,其净磁矩为1.38μв.掺杂形成的N-Ag键电荷集居数较小,表现出强的离子键性质.掺杂后体系的介电函数虚部和光吸收谱在低能区出现新的峰值,同时复折射率函数在低能区发生变化,吸收边向低能方向延展,体系对长波吸收加强,能量损失明显减小.  相似文献   

19.
The elastic constants, elastic anisotropy index, and anisotropic fractional ratios of Ti4AlC3, Zr4AlC3, and Hf4AlC3 are studied by using a plane wave method based on density functional theory. All compounds are characterized by the elastic anisotropy index. The bond length, population, and hardness of the three compounds are calculated. The degrees of hardness are then compared. The minimum thermal conductivity at high temperature limitation in the propagation direction of [0001](0001) is calculated by the acoustic wave velocity, which indicates that the thermal conductivity is also anisotropic. Finally, the electronic structures of the compounds are analyzed numerically. We show that the bonding of the M4AlC3 lattice exhibits mixed properties of covalent bonding, ionic bonding, and metallic bonding. Moreover, no energy gap is observed at the Fermi level, indicating that various compounds exhibit metallic conductivity at the ground state.  相似文献   

20.
采用基于密度泛函理论的平面波超软赝势方法,研究了N和C原子分别单掺杂和双掺杂锐钛矿TiO2的形成能、晶体结构、电子结构和光学性质。计算结果表明:原子替位掺杂后体系晶格发生畸变;C替位掺杂更倾向于替代Ti位,而非O位;替位掺杂使TiO2光吸收带边发生了明显红移,且在可见光区域的吸收效率明显增加,大大提高了光催化效率。与单掺杂比较发现,N、C双掺杂红移现象更加明显,为较好的掺杂改性方式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号