首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanostructured bismuth ferrite (BiFeO3) thin films were deposited on glass substrate by the sol-gel process. The as-fired film at 250 °C was found to be amorphous crystallizing to pure rhombohedral phase after annealing at 450 °C for 2 h in air. The XRD pattern shows that the sample is polycrystalline in nature. The average grain size of the film calculated from the XRD data was found to be 16 nm. The as-fired film show high transmittance that decreases after crystallization. The absorption edge of the films was found to be sharper and shifting towards the lower energy as the annealing temperature increases. The optical energy band gaps of the amorphous and crystalline films were found to be 2.63 and 2.31 eV, respectively. The refractive indices of the amorphous and crystalline films were 2.05 and 2.26, respectively.  相似文献   

2.
Structural and photoluminescent properties of TiN thin films deposited by dc reactive magnetron sputtering are studied. It is found that TiN thin films are polycrystalline with a grain size of ~15 nm and have a NaCl-type cubic crystal structure with a lattice constant of 0.42 nm. The TiN films under study exhibit photoluminescence in the spectral range h ν ≈ 2.1–3.4 eV at 300 K.  相似文献   

3.
In this paper we investigate the formations and morphological stabilities of Co-silicide fihns using 1-8-nm thick Co layers sputter-deposited on silicon (100) substrates. These ultrathin Co-silicide films are formed via solid-state reaction of the deposited Co films with Si substrate at annealing temperatures from 450 ℃ to 850 ℃. For a Co layer with a thickness no larger than i nm, epitaxially aligned CoSi2 films readily grow on silicon (100) substrate and exhibit good morphological stabilities up to 600 ℃. For a Co layer thicker than 1 nm, polycrystalline CoSi and CoSi2 films are observed. The critical thickness below which epitaxially aligned CoSi2 film prevails is smaller than the reported critical thickness of the Ni layer for epitaxial alignment of NiSi2 on silicon (100) substrate. The larger lattice mismatch between the CoSi2 film and the silicon substrate is the root cause for the smaller critical thickness of the Co layer.  相似文献   

4.
肖洪地  毛宏志  林兆军  马洪磊 《中国物理 B》2010,19(8):86106-086106
Black-coloured GaN nanoparticles with an average grain size of 50 nm have been obtained by annealing GaN nanoparticles under flowing nitrogen at 1200 oC for 30 min. XRD measurement result indicates an increase in the lattice parameter of the GaN nanoparticles annealed at 1200 oC, and HRTEM image shows that the increase cannot be ascribed to other ions in the interstitial positions. If the as-synthesised GaN nanoparticles at 950 oC are regarded as standard, the thermal expansion changes nonlinearly with temperature and is anisotropic; the expansion below 1000oC is smaller than that above 1000 oC. This study provides an experimental demonstration for selecting the proper annealing temperature of GaN. In addition, a large blueshift in optical bandgap of the annealed GaN nanoparticles at 1200 oC is observed, which can be ascribed to the dominant transitions from the C(Γ7) with the peak energy at 3.532 eV.  相似文献   

5.
In this paper we investigate the formations and morphological stabilities of Co-silicide films using 1-8-nm thick Co layers sputter-deposited on silicon(100) substrates.These ultrathin Co-silicide films are formed via solid-state reaction of the deposited Co films with Si substrate at annealing temperatures from 450℃ to 850℃.For a Co layer with a thickness no larger than 1 nm,epitaxially aligned CoSi2 films readily grow on silicon(100) substrate and exhibit good morphological stabilities up to 600℃.For a Co layer thicker than 1 nm,polycrystalline CoSi and CoSi2 films are observed.The critical thickness below which epitaxially aligned CoSi2 film prevails is smaller than the reported critical thickness of the Ni layer for epitaxial alignment of NiSi2 on silicon(100) substrate.The larger lattice mismatch between the CoSi2 film and the silicon substrate is the root cause for the smaller critical thickness of the Co layer.  相似文献   

6.
ZnSe thin films have been deposited on high cleaned glass substrate by spray pyrolysis technique within the glass substrate temperature range (400 C to 450 C). The structural properties of ZnSe thin films have been investigated by (XRD) X-ray diffraction techniques. The X-ray diffraction spectra showed that ZnSe thin films are polycrystalline and have a cubic (zinc blende) structure. The most preferential orientation is along the (111) direction for all spray deposited ZnSe films together with orientations in the (220) and (311) planes also being abundant. The film thickness was determined by an interferometric method. The lattice parameter, grain size, microstrain and dislocation densities were calculated and correlated with the substrate temperature (TS). The optical properties of ZnSe thin films have been investigated by UV/VIS spectrometer and the direct band gap values were found to be in the region of 2.65 eV to 2.70 eV. The electrical properties of ZnSe thin films have been investigated using the Van der Pauw method and the high quality ZnSe thin films were observed to develop at 430 C with a resistivity of 56,4×105 ohm cm, a conductivity of 1.77×10-7 (Ω cm)-1 and a hall mobility of 0.53 cm2/Vsec.  相似文献   

7.
The structural, morphological, optical and electrical properties of ZnTe films deposited by evaporation were investigated as a function of substrate temperature (at −123 and 27 °C) and post-deposition annealing temperature (at 200, 300 and 400 °C). It was determined that films deposited at both substrate temperatures were polycrystalline in nature with zinc-blende structure and a strong (1 1 1) texture. A small Te peak was detected in XRD spectra for both substrate temperatures, indicating that as-deposited ZnTe films were slightly rich in Te. Larger grains and a tighter grain size distribution were obtained with increased substrate temperature. Scanning electron microscopy (SEM) studies showed that the microstructures of the as-deposited films agreed well with the expectations from structure zone model. Post-deposition annealing induced further grain growth and tightened the grain size distribution. Annealing at 400 °C resulted in randomization in the texture of films deposited at both substrate temperatures. Optical spectroscopy results of the films indicated that the optical band gap value increased from 2.13 to 2.16 eV with increased substrate temperature. Increasing the annealing temperature sharpened the band-edge. Resistivity measurements showed that the resistivity of films deposited at substrate temperatures of −123 and 27 °C were 32 Ω cm, and 1.0 × 104 Ω cm, respectively with corresponding carrier concentrations of 8.9 × 1015 cm−3 and 1.5 × 1014 cm−3. Annealing caused opposite changes in the film resistivity between the samples prepared at substrate temperatures of −123 and 27 °C.  相似文献   

8.
The relationship between the structure and the microwave dielectric properties of epitaxial Ba0.5Sr0.5TiO3 (BST) films has been investigated. Single-phase BST films (40-160 nm) have been deposited onto (100) MgO substrates by pulsed laser deposition. As-deposited films show a significant tetragonal distortion. The in-plane lattice parameters (a) are always larger than the surface normal lattice parameters (c). The tetragonal distortion depends on the thickness of the films and the post-deposition annealing conditions. Films annealed at 900 °C show less tetragonal distortion than the as-deposited film and the films annealed at higher temperatures. The distortion in the film is due to stress caused by the lattice mismatch and thermal expansion coefficient differences between the film and the substrate. The dielectric constant and its change with dc bias voltage of BST films on MgO at microwave frequencies increase with increasing annealing temperature from 900 °C to 1200 °C, which corresponds to an increase in the tetragonal distortion.  相似文献   

9.
Transparent conductive ZnO:Ga thin films were deposited on Corning 1737 glass substrate by pulsed direct current (DC) magnetron sputtering. The effects of process parameters, namely pulse frequency and film thickness on the structural and optoelectronic properties of ZnO:Ga thin films are evaluated. It shows that highly c-axis (0 0 2) oriented polycrystalline films with good visible transparency and electrical conductivity were prepared at a pulsed frequency of 10 kHz. Increasing the film thickness also enlarged the grain size and carrier mobility which will subsequently lead to the decrease in resistivity. In summary, ZnO:Ga thin film with the lowest electrical resistivity of 2.01 × 10−4 Ω cm was obtained at a pulse frequency of 10 kHz with 500 nm in thickness. The surface RMS (root mean square) roughness of the film is 2.9 nm with visible transmittance around 86% and optical band gap of 3.83 eV.  相似文献   

10.
使用成分分别为MnFe2O4和ZnFe2O4的靶,使用射频溅射交替沉积制备了成分不同的Mn1-xZnxFe2O4薄膜,沉积薄膜所用基片分别为单晶硅Si(100),氧化的单晶硅SiO2/Si(100), ZnFe2O4为衬底的单晶硅ZnFe< 关键词: MnZn铁氧体 纳米晶 软磁性 磁性薄膜  相似文献   

11.
Superconducting thin films of Y-Ba-Cu-O have been prepared by 50 Hz ac sputtering on polycrystalline SrTiO3, yttria-stabilized-ZrO2, and MgO substrates. Films deposited on different substrate materials are required to be annealed at different temperatures to induce superconductivity. The optimum annealing temperature for a film depends on the reaction between the film and its substrate material. It appears that a correlation exists between the process of crystallisation and substrate-film reaction.  相似文献   

12.
CuInS2 thin films were prepared by a two-stage ion layer gas reaction (ILGAR) process in which the Cu and In precursors were deposited on glass substrate by using a simple and low-cost dip coating technique and annealed in H2S atmosphere at different temperatures. The influence of the annealing temperature (250-450 °C) on the particle size, crystal structure and optical properties of the CuInS2 thin films was studied. Transmission electron microscopy revealed that the particle radii varied in the range 6-21 nm with annealing. XRD and SAED patterns indicated polycrystalline nature of the nanoparticles. The optical band gap (Eg) varied from 1.48 to 1.56 eV with variation of particle size. The variation of Urbach tail with temperature indicated higher density of the defects for the films annealed at lower temperature. From the Raman study, it was observed that the FWHM of the A1 mode at ∼292 cm−1 corresponding to the chalcopyrite phase of CuInS2 decreased with increasing annealing temperature.  相似文献   

13.
We have prepared SrTiO3/BaTiO3 thin films with multilayered structures deposited on indium tin oxide (ITO) coated glass by a sol-gel deposition and heating at 300-650 °C. The optical properties were obtained by UV-vis spectroscopy. The films show a high transmittance (approximately 85%) in the visible region. The optical band gap of the films is tunable in the 3.64-4.19 eV range by varying the annealing temperature. An abrupt decrease towards the bulk band gap value is observed at annealing temperatures above 600 °C. The multilayered film annealed at 650 ° C exhibited the maximum refractive index of 2.09-1.91 in the 450-750 nm wavelength range. The XRD and AFM results indicate that the films annealed above 600 ° C are substantially more crystalline than the films prepared at lower temperatures which were used to change their optical band gap and complex refractive index to an extent that depended on the annealing temperature.  相似文献   

14.
Films of La0.5Sr0.5CoO3 (LSCO) have been deposited on specially treated TiO2-terminated (001) SrTiO3 substrate surfaces and on macroporous polycrystalline !-Al2O3 substrates, having a mean pore diameter of 80 nm, by pulsed laser deposition. The films deposited on SrTiO3 are good conducting, (001) textured, and exceptionally smooth (1-2 Å for 100 nm thick films). LSCO films deposited on porous !-Al2O3 are polycrystalline and exhibit good crystallographic and electrical properties despite the large substrate roughness and the differences in lattice parameters and crystal structure between the film and the substrate. Different growth modes have been observed on the porous !-Al2O3 substrates depending on the oxygen pressure during film deposition. Films grown at an oxygen pressure of 10-1 mbar are macroporous, whereas films grown at 10-2 mbar completely cover the substrate pores. In the latter case, strain effects lead to film cracking.  相似文献   

15.
Nd-Fe-B/FeCo多层纳米复合膜的结构和磁性   总被引:4,自引:0,他引:4       下载免费PDF全文
敖琪  张瓦利  张熠  吴建生 《物理学报》2007,56(2):1135-1140
制备了Nd28Fe66B6/Fe50Co50多层纳米复合磁性薄膜,对溅射态和650℃退火处理15 min试样的相成分分析和微结构的观察显示,溅射态薄膜呈非晶态,经650℃退火处理15 min后,薄膜主要相成分为硬磁性Nd2Fe14B相和软磁性相FeCo(110)相.Nd2Fe14B相呈柱状,其易磁化c轴垂直于膜面,尺寸约10 nm.在硬磁性相和软磁性相之间存在少量富Nd相和非晶态,富Nd相大小约7 nm.磁性测量和分析表明,1)该系列薄膜退火态具有垂直于膜面的磁晶各向异性.2)对于固定厚度(10 nm)层Nd-Fe-B和不同厚度(tFeCo=1—100 nm)层FeCo多层纳米复合膜,剩磁随软磁相FeCo 厚度的增加快速增加,而矫顽力则减小.当tFeCo=5 nm时,最大磁能积达到200 kJ/m3. 3)硬磁相Nd-Fe-B层和软磁相FeCo层之间交换耦合导致剩磁和磁能积增强. 关键词: Nd-Fe-B/FeCo多层纳米复合膜 交换耦合 磁各向异性  相似文献   

16.
Al-doped ZnO (AZO) films prepared at different substrate temperature and AZO films with intentional Zn addition (ZAZO) during deposition at elevated substrate temperature were fabricated by radio frequency magnetron sputtering on glass substrate, and the resulting structural, electrical, optical properties together with the etching characteristics and annealing behavior were comparatively examined. AZO films deposited at 150 °C showed the optimum electrical properties and the largest grain size. XPS analysis revealed that AZO films deposited at elevated temperature of 450 °C contained large amount of Al content due to Zn deficiency, and that intentional Zn addition during deposition could compensate the deficiency of Zn to some extent. It was shown that the electrical, optical and structural properties of ZAZO films were almost comparable to those of AZO film deposited at 150 °C, and that ZAZO films had much smaller etching rate together with better stability in severe annealing conditions than AZO films due possibly to formation of dense structure.  相似文献   

17.
This paper reports that a series of silver oxide (AgxO) films are deposited on glass substrates by direct-current reactive magnetron sputtering at a substrate temperature of 250 oC and an oxygen flux ratio of 15:18 by modifying the sputtering power (SP). The AgxO films deposited apparently show a structural evolution from cubic biphased (AgO + Ag2O) to cubic single-phased (Ag2O), and to biphased (Ag2O + AgO) structure. Notably, the cubic single-phased Ag2O film is deposited at the SP = 105 W and an AgO phase with <220> orientation discerned in the AgxO films deposited using the SP > 105 W. The transmissivity and reflectivity of the AgxO films in transparent region decrease with the increase the SP, whereas the absorptivity inversely increases with the increase of the SP. These results may be due to the structural evolution and the increasing film thickness. A redshift of the films' absorption edges determined in terms of Tauc formula clearly occurs from 3.1 eV to 2.73 eV with the increase of the SP.  相似文献   

18.
The Cu2ZnSnS4 (CZTS) thin films have been electrochemically deposited on Mo-coated glass substrate from weak acidic medium (pH 4.5-5) at room temperature. The effect of complexing agent (tri-sodium citrate) on the structural, morphological and compositional properties of CZTS thin films has been investigated. The as-deposited and annealed thin films were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM),EDAX and X-ray photoelectron spectroscopy (XPS) techniques for their structural, morphological, compositional and chemical properties, respectively. XRD studies reveal that the amorphous nature of as-deposited thin film changes into polycrystalline with kesterite crystal structure after annealing in Ar atmosphere. The film prepared without complexing agent showed well-covered surface morphology on the substrate with some cracks on the surface of the film whereas those prepared using complexing agent, exhibited uneven and slightly porous and some overgrown particles on the surface of the films. After annealing, morphology changes into the flat grains, uniformly distributed over the entire surface of the substrate. The EDAX and XPS study reveals that the films deposited using 0.2 M tri-sodium citrate are nearly stoichiometric.  相似文献   

19.
Transparent conducting indium doped zinc oxide was deposited on glass substrate by ultrasonic spray method. The In doped ZnO samples with indium concentration of 3 wt.% were deposited at 300, 350 and 400 °C with 2 min of deposition time. The effects of substrate temperature and annealing temperature on the structural, electrical and optical properties were examined. The DRX analyses indicated that In doped ZnO films have polycrystalline nature and hexagonal wurtzite structure with (0 0 2) preferential orientation and the maximum average crystallite size of ZnO: In before and annealed at 500 °C were 45.78 and 55.47 nm at a substrate temperature of 350 °C. The crystallinity of the thin films increased by increasing the substrate temperature up 350 °C, the crystallinity improved after annealing temperature at 500 °C. The film annealed at 500 °C and deposited at 350 °C show lower absorption within the visible wavelength region. The band gap energy increased from Eg = 3.25 to 3.36 eV for without annealing and annealed films at 500 °C, respectively, indicating that the increase in the transition tail width. This is due to the increase in the electrical conductivity of the films after annealing temperature.  相似文献   

20.
Thin films of molybdenum oxide were deposited in vacuum by pulsed laser ablation using a xenon fluoride (351 nm) and a krypton fluoride (248 nm) excimer lasers. The films were deposited on unheated substrates and were post-annealed in air in the temperature range 300–500°C. The structural, morphological, chemical, and optical properties of the films were studied. As-deposited films were found to be dark. The transparency of the films was improved with annealing in air. The films were polycrystalline with diffraction peaks that belong to the orthorhombic phase of MoO3. The surface morphology of the films showed a layered structure. Both the grain size and surface roughness increased with annealing temperature. The stoichiometry of the films improved upon annealing in air, with the best stoichiometry of MoO2.95 obtained for films deposited by the XeF laser and annealed at 400°C. Similarly, the best transparency, with a transmittance exceeding 80%, was obtained with the films annealed in the temperature range 400–450°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号