首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
黑磷晶体的单原子层结构被定义为磷烯,它具有独特的褶皱形态和一些区别于其它二维晶体材料的特性,如可调控的直接带隙,高开关比,高载流子迁移率以及优异的光学饱和吸收特性等,使其在纳米电子和纳米光学领域具有潜在应用价值.此外,蓝磷烯被理论计算所预测,它是黑磷烯的一种同素异形体,具有许多类似黑磷烯的优异特性.本文主要介绍了当前两种构型磷烯的研究进展,包括黑/蓝磷烯各自的晶体结构、制备方法、物理特性和稳定性;最后对目前磷烯研究中存在的问题与挑战提出了一些见解和展望.  相似文献   

2.
Employing first-principles density functional theory (DFT), the structures and electronic and mechanical properties of Al(111)/ZrB2(0001) heterojunctions are investigated. It is found that both B-terminated ZrB2(0001) and Zr-terminated ZrB2(0001) can form heterojunction interfaces with Al(111) surface. The heterojunction with B-terminated ZrB2(0001) is demonstrated to be most stable by comparing the surface adhesion energies of six different heterojunction models. In the stable configurations, the Al atom is found projecting to the hexagonal hollow site of neighbouring boron layer for the B-terminated ZrB2(001), and locating at the top site of the boron atoms for Zr-terminated ZrB2(001) interface. The mechanisms of interface interaction are investigated by density of states, charge density difference and band structure calculations. It is found that covalent bonds between surface Al atoms and B atoms are formed in the B-terminated heterojunction, whereas the Al atoms and Zr atoms are stabilised by interface metallic bonds for the Zr-terminated case. Mechanical properties of Al/ZrB2 heterojunctions are also predicted in the current work. The values of moduli of Al/ZrB2 heterojunctions are determined to be between those of single crystal Al and ZrB2, which exhibit the transition of mechanical strength between two bulk phases. DFT calculations with the current models provide the mechanical properties for each heterojunction and the corresponding contributions by each type of interface in the composite materials. This work paves the way for industrial applications of Al(111)/ZrB2(0001) heterojunctions.  相似文献   

3.
谭兴毅  王佳恒  朱祎祎  左安友  金克新 《物理学报》2014,63(20):207301-207301
基于密度泛函理论的第一性原理平面波赝势方法,研究了二维黑磷中的碳原子(C P)、氧原子(C P)、硫原子(S P)掺杂的几何结构、磁学性质和电子结构.发现掺杂体系结构稳定,C P和O P体系形变较大,而S P体系形变较小;二维黑磷本身无磁矩,掺杂后都具有1μB的总磁矩.由于掺杂体系具有稳定的铁磁性,使其在自旋电子器件方面可发挥重要的作用.  相似文献   

4.
We investigated the electronic structure, adsorption energies, magnetic properties, dipole moment and work function of metal adatoms (Mg, Cr, Mo, Pd, Pt, and Au) adsorption on a blue phosphorene monolayer. For Mg, Pt and Au metals, the most stable state was found in hollow site while for Cr, Mo and Pd metals we found an adsorption in valley site. We suggest that the Pd and Pt atoms prefer 2D growth mode while the Mg, Cr, Mo and Au atoms prefer 3D island growth mode on monolayer phosphorene. The electronic band structures and magnetic properties were dependent on the doping site and dopant materials. For instance, the semiconducting features were preserved in Mg, Pd, Pt, and Au doped systems. However, the Cr and Mo doped systems displayed half-metallic band structures. The total magnetic moment of 4.05, 2.0 and 0.77μB/impurity atom were obtained in Cr, Mo and Au doped systems whereas the Mg, Pd and Pt doped systems remained nonmagnetic. We also investigated the magnetic interaction between two transition metal impurities. We observed ferromagnetic coupling between two transition metal impurities in Cr and Mo doped systems while the Au doped system displayed almost degenerated magnetic state. For Mg, Cr, and Mo adsorptions, we found relatively large values of dipole moments compared to those in the Pd, Pt and Au adsorptions. This resulted in a significant suppression of the work function in Mg, Cr and Mo adsorptions. Overall, adsorption can tune the physical and magnetic properties of phosphorene monolayer.  相似文献   

5.
In recent days, humans are easily exposed to many work-related health issues. N-nitrosodiethylamine (NDE), which is considered to be a harmful carcinogenic agent released from rubber-based industries imparts a long-lasting effect on human health and immunity system. The current research investigates the ability of the two-dimensional nanomaterial, blue phosphorene nanosheet (BPNS) to detect the presence of NDE in the environment. Besides, the electronic and structural characteristics of BPNS are initially explored and NDE target vapour is permitted to interact with the chief component, BPNS. We have also designed blue phosphorene device to study the adsorption properties of NDE vapours based on current–voltage characteristics. The adsorption attributes are accounted for the target vapour adsorbed chief component, the results suggest that BPNS can be employed in detecting NDE vapours.  相似文献   

6.
We have investigated the electronic and magnetic properties of zigzag phosphorene nanoribbons(ZPNRs)with transition metal(TM)passivated atoms,it can be found that the ZPNRs with TM passivated atoms exhibit different magnetisms except for the Ni-passivated system.Meanwhile,the results show that the magnetic moments of ZPNRs with TM passivated atoms are larger than that of ZPNRs with other passivated non-metals/groups.Interestingly,it can be found that Fe-passivated ZPNR exhibits magnetic semiconducting character,which provides the possbility for the application of phosphorene in information storage.For Mn-passivated ZPNRs,it exhibits the half-metallicity.These results may be useful for potential applications of phosphorene in electronic and high-performance spintronic devices.  相似文献   

7.
Optical properties of phosphorene are tuned by adsorption of alkali metals (Li and Na) and halogens (Br and Cl). It has been found that on increasing the size of alkali metals and halogen adsorbed phosphorene layer the absorption coefficient reduces and shifts towards visible region. The refractive index in alkali metal adsorbed phosphorene increases with size of phosphorene layer. For halogen adsorbed structure it decreases with increase in size of phosphorene layer. Optical absorption is observed to depend on both dielectric constant and refractive index. Since adsorption of alkali and halogen materials modifies the refractive index of phosphorene, absorption is seen to reduce in all cases where refractive index increases due to adsorption even when the dielectric constant was high.  相似文献   

8.
A plane-wave density functional theory (DFT) study on surface interactions of a cyclo-[Au(μ-Pz)]3 monolayer (denoted as T), Pz = pyrazolate, with Au(111) and Al(111) surfaces (denoted as M′) has been performed. Structural and electronic properties at the M′–T interfaces are determined from individually optimized structures of M′, T and M′–T. Results show that the gold pyrazolate trimer (T) binds more strongly on the Au(111) surface than on Al(111). Charge redistribution has been observed at both M′–T interfaces, where charge is “pushed” back towards the Au(111) surface from the trimer monolayer in Au(111)–T system, while the opposite happens in the Al(111)–T system where the charge is being pushed toward the trimer monolayer from the Al(111) surface. Considerable changes to the work function of Au(111) and Al(111) surfaces upon the trimer adsorption which arise from monolayer vacuum level shifts and dipole formation at the interfaces are calculated. The interaction between cyclo-[Au(μ-Pz)]3 with metal surfaces causes band broadening of the gold pyrazolate trimer in M′–T systems. The present study aids better understanding of the role of intermolecular interactions, bond dipoles, energy-level alignment and electronic coupling at the interface of metal electrodes and organometallic semiconductor to help design metal–organic field effect transistors (MOFETs) and other organometallic electronic devices.  相似文献   

9.
We perform a first-principles investigation of the atomic structures and electronic properties of interfaces between aluminum and four kinds of ceramics, TiC, TiN, VC and VN, under three orientations (001), (110) and (111). We find that the stable interfaces are those with bonding between Al atom and metalloid C (or N) atom, which is attributed to the overlap of p states of Al and d states of metalloid atoms at Femi level forming covalent components. Among the interfaces with the three orientations, the (111) interfaces are found to possess the largest adhesion energy in that the stacking of atoms follows intrinsic atomic distribution and this interfacial bonding is relatively strong. It is also found that the interfaces between Al and metal carbides (TiC and VC) are more stable than those between Al and metal nitrides (TiN and VN).  相似文献   

10.
We perform ab initio pseudopotential calculations for metal crystals with finite facets of different crystallographic orientation to investigate the work function profile near crystal edges. We examine local edge effects, and address the problem of the coexistence of different face-dependent local work functions at crystal edges. By modeling the electronic dipoles at the metal surface, we show how nonvanishing surface charges spontaneously appear on metals with inequivalent facets. Our studies of Al crystal nanowires with (100) and (111) facets are extended to derive the dependence of the work function on the crystal morphology in the macroscopic limit.  相似文献   

11.
胡格  胡军 《化学物理学报》2020,33(4):443-449
本文通过第一性原理计算方法研究了被第四B族过渡金属吸附原子(Cr,Mo,W)修饰的蓝磷单层的电子结构性质,发现Cr修饰的蓝磷单层为磁性半金属,而Mo或W修饰的蓝磷单层为半导体,其带隙均小于0.2 eV. 对Mo或W修饰的蓝磷单层施加双轴压应力使得带隙先闭合再打开,且在此过程中发生了能带反转的现象,说明Mo或W修饰的蓝磷单层发生了拓扑转变. Mo和W修饰的蓝磷单层的拓扑转变压应力分别为-5.75%和-4.25%,其拓扑绝缘带隙分别为94 meV和218 meV. 如此大的拓扑绝缘带隙意味着在较高温度条件下有可能在蓝磷单层中通过吸附过渡金属原子实现拓扑绝缘态.  相似文献   

12.
Silicene, a monolayer of silicon atoms arranged in a honeycomb lattice, has been undergoing rapid development in recent years due to its superior electronic properties and its compatibility with mature silicon-based semiconductor technology. The successful synthesis of silicene on several substrates provides a solid foundation for the use of silicene in future microelectronic devices. In this review, we discuss the growth mechanism of silicene on an Ag(111) surface, which is crucial for achieving high quality silicene. Several critical issues related to the electronic properties of silicene are also summarized, including the point defect effect, substrate effect, intercalation of alkali metal, and alloying with transition metals.  相似文献   

13.
Infrared-visible sum-frequency generation (SFG) spectroscopy is performed at different visible wavelengths between 450 and 650 nm in order to investigate the interaction between metallic substrates (Pt, Ag and Au) and 1-dodecanethiol self-assembled monolayers. We show that such measurements provide a means to study the electronic properties of metals as well as the interference phenomena between the SFG signals from the adsorbate and the substrate. The common features of the three interfaces are the vibration modes of the terminal methyl groups. However, these resonances appear as peaks for Pt (111) and as dips in the case of Ag (111). Their shape is not modified when the visible wavelength is tuned between 450 and 650 nm. Moreover, the metal sum-frequency generation contribution is slightly modified in that spectral range. For Au (111) samples, the sum-frequency generation spectrum drastically evolves with the visible wavelength: the peak resonant sum-frequency generation signal at 450 nm becomes rather dip-shaped at 650 nm. The non-linear response of gold is also enhanced when the wavelength associated with the sum-frequency process is close to 480 nm. These results are interpreted on the basis of the metal electronic properties that are responsible for the non-resonant contribution to the SFG signal. Received: 15 October 2001 / Revised version: 27 March 2002 / Published online: 6 June 2002  相似文献   

14.
《Physics letters. A》2020,384(5):126123
Two-dimensional (2D) material of few-layer black phosphorus (BP) has recently attracted extensive interest owing to its tunable band gap and high carrier mobility. We investigate the electronic transport properties of zigzag black phosphorene nanoribbons (ZBPNRs) with asymmetric H, Li, O and Co edge saturations by employing the density functional theory in combination with the non-equilibrium Green's function. The computational results forecast that different types of saturated atoms at both edge of ribbons mainly contribute to the electronic transport properties of molecular junctions. The metal edge saturation of Co atom is used to the one edge of ZBPNR which can induce an identical electronic transport property. Interestingly, the negative differential resistance (NDR) phenomena can be observed in our proposed ZBPNR junctions with an analysis of internal physical mechanism. Our theoretical results could support the possibility of potential applications to design 2D electronic devices based on the material of BP in future.  相似文献   

15.
We investigate conductance through contacts created by pressing a hard tip, as used in scanning tunneling microscopy, against substrates. Two different substrates are considered, one a normal metal (Cu) and another a semi-metal (graphite). Our study involves the molecular dynamics simulations for the atomic structure during the growth of the contact, and selfconsistent field electronic structure calculations of deformed bodies. We develop a theory predicting the conductance variations as the tip approaches the surface. We offer an explanation for a quasiperiodic variation of conductance of the contact on the graphite surface, a behavior which is dramatically different from contacts on normal metals.  相似文献   

16.
The aim of this work is to analyze on the results of using of Al/Ag layer as a rear contact to improve the performance of heterojunction silicon solar cells. An analytical method is presented to extract the physical parameters of the equivalent circuit. These parameters are extracted to simulate the I(V) characteristic of heterojunction silicon solar cells, with Al and Al/Ag rear-metal contact. A good agreement between our analytical method and experimental measurement of electrical characteristics is obtained which show clearly how the Al/Ag rear contact can improve the characteristics of silicon solar cells. The influence of the rear-metal contact on the performance of the c-Si(p)-based bifacial HIT solar cell, i.e., the ZnO/Al/a-Si:H(n)/a-Si:H(i)/c-Si(p)/metal solar cell, is investigated in detail by computer simulation using the AFORS-HET software. Accordingly, the design optimization of the bifacial HIT solar cells on c-Si(p) substrates is provided. These simulation show an optimal conversion efficiency of 23% when the rear-metal contact is perfectly ohmic.  相似文献   

17.
Samples of oxidized metal powders (Ag, Al, Cr, La, Nb, Ni, Ti) were repeatedly contacted with a gold plate under high vacuum conditions. The charge transfer was measured on both the samples and the gold plate. We observed charge saturation after one contact in most cases. Positive and negative polarities were detected. The charge densities were calculated and correlated with work functions of oxidized metals. Contact electrification of aluminum shows exceptional behavior with repeated contacts.  相似文献   

18.
2,3,7,8-四氯二苯并对二噁英(2,3,7,8-TCDD)是二噁英家族中危害人类和环境最显著的一种.设计一种高效,灵敏的吸附剂来检测和去除2,3,7,8-TCDD对人类和环境的影响是亟需解决的问题.本研究利用基于密度泛函理论(DFT)的计算模拟方法探索了本征磷烯对2,3,7,8-TCDD的吸附机理,并详细考察了掺杂Ti, Fe, Ca, Al金属原子后磷烯对2,3,7,8-TCDD吸附的影响.研究结果表明2,3,7,8-TCDD初始构型会影响磷烯对其吸附,当平躺于磷烯表面时有较大的吸附.而且掺杂金属原子的磷烯对2,3,7,8-TCDD的吸附也存在较大的影响,掺杂金属原子均增大了磷烯对2,3,7,8-TCDD的吸附,其中Ca掺杂磷烯>Fe掺杂磷烯>Ti掺杂磷烯>Al掺杂磷烯.研究结论对于2,3,7,8-TCDD的处理带来了新的思考方向,有望为二噁英的检测和去除提供有用的理论指导.  相似文献   

19.
We investigate the role of substrates on the collective excitations of graphene by using a first-principles implementation of the density response function within the random-phase approximation. Specifically, we consider graphene adsorbed on SiC(0001) and Al(111) as representative examples of a semiconducting and metallic substrate. On SiC(0001), the long wavelength π plasmons are significantly damped although their energies remain almost unaltered. On Al(111), the long wavelength π plasmons are completely quenched due to the coupling to the metal surface plasmon. The strong damping of the plasmon excitations occurs despite the fact that the single-particle band structure of graphene is completely unaffected by the substrates illustrating the nonlocal nature of the effect.  相似文献   

20.
《Physics letters. A》2020,384(35):126853
Regulating the magnetic state of 2D materials is becoming increasingly important for the next generation of spintronic devices. In this study, the first-principles calculation method is used to study the synergistic modulating effect of biaxial strain and vacancy defects on the magnetic properties of blue phosphorene. Results show that only Single Vacancy (SV) doping magnetizes the intrinsic blue phosphorene, Double Vacancy-1 (DV-1), Double Vacancy-2 (DV-2) and Double Vacancy-3 (DV-3) doped blue phosphorene are magnetized under biaxial strain. The magnetic states of SV, DV-1, DV-2 and DV-3 systems change with the intensity of biaxial strain. In some cases, the magnetic moment of the system can be changed from 0 μB to 4 μB. The biaxial strain affects the partially bonding structure near the defects, changes the position of the dangling bond, and thereby adjusts the magnetic state. Our research provides positive guidance for the future application of blue phosphorene in the semiconductor field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号