首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider an oscillator with a random mass for which the particles of the surrounding medium adhere to the oscillator for some random time after the collision (Brownian motion with adhesion for a harmonically bound particle). This is another form of a stochastic oscillator, different from oscillator usually studied that is subject to a random force or having random frequency or random damping. Calculation of the first two stationary moments shows that for white multiplicative noise of week strength the second moment coincides with that of usual Brownian motion, but for symmetric dichotomous noise, the second moment may appear the same type of the “energetic” instability, which exists for white noise random frequency or damping coefficient.  相似文献   

2.
In addition to the case usually considered of a stochastic harmonic oscillator subject to an external random force (Brownian motion in a parabolic potential) or to a random frequency and random damping, we consider an oscillator with random mass subject to an external periodic force, where the molecules of a surrounding medium, which collide with a Brownian particle are able to adhere to the oscillator for a random time, changing thereby the oscillator mass. The fluctuations of mass are modelled as trichotomous noise. Using the Shapiro–Loginov procedure for splitting the correlators, we found the first two moments. It turns out that the second moment is a non-monotonic function of the characteristics of noise and periodic signal, and for some values of these parameters, the oscillator becomes unstable.  相似文献   

3.
钟苏川  蔚涛  张路  马洪 《物理学报》2015,64(2):20202-020202
以往的研究大多考虑线性谐振子模型受频率涨落噪声的影响, 而当布朗粒子处于具有吸附能力的复杂环境时, 粒子质量也存在随机涨落. 因此, 本文研究具有质量及频率涨落两项噪声的二阶欠阻尼线性谐振子模型的随机共振现象. 利用Shapiro-Loginov公式和Laplace变换, 推导了系统响应一阶稳态矩及稳态响应振幅的解析表达式. 并根据稳态响应振幅的解析表达式, 建立了稳态响应振幅关于质量涨落噪声及频率涨落噪声各自的噪声强度能够诱导随机共振现象产生的充分必要条件. 仿真实验表明, 当系统参数满足本文所给出的充分必要条件要求时, 系统稳态响应振幅关于噪声强度的变化曲线具有明显的共振峰, 即此选定参数组合能够诱导系统产生随机共振现象.  相似文献   

4.
Using the Langevin equations, we calculated the stationary second-order moment (mean-square displacement) of a stochastic harmonic oscillator subject to an additive random force (Brownian motion in a parabolic potential) and to different types of multiplicative noise (random frequency or random damping or random mass). The latter case describes Brownian motion with adhesion, where the particles of the surrounding medium may adhere to the oscillator for some random time after the collision. Since the mass of the Brownian particle is positive, one has to use quadratic (positive) noise. For all types of multiplicative noise considered, replacing linear noise by quadratic noise leads to an increase in stability.  相似文献   

5.
《Physics letters. A》2005,336(1):16-24
We show a completely analytical approach to the decoherence induced by a zero temperature environment on a Brownian test particle. We consider an Ohmic environment bilinearly coupled to an oscillator and compute the master equation. From diffusive coefficients, we evaluate the decoherence time for the usual quantum Brownian motion and also for an upside-down oscillator, as a toy model of a quantum phase transition.  相似文献   

6.
7.
We investigate the nonequilibrium steady-state thermodynamics of single Brownian macromolecules with inertia under feedback control in an isothermal ambient fluid. With the control being represented by a velocity-dependent external force, we find such an open system can have a negative entropy production rate, and we develop a mesoscopic theory consistent with the second law. We propose an equilibrium condition and define a class of external force, which includes the transverse Lorentz force, leading to equilibrium.  相似文献   

8.
蔚涛  罗懋康  华云 《物理学报》2013,62(21):210503-210503
针对黏性介质引起的Brown粒子质量存在随机涨落以及阻尼力对历史速度具有记忆性等问题, 本文首次提出分数阶质量涨落谐振子模型, 以考察黏性介质中Brown粒子的动力学特性. 首先, 将Shapiro-Loginov 公式分数阶化, 使之适用于对含指数关联随机系数的分数阶随机微分方程的求解. 然后, 利用随机平均法和分数阶Shapiro-Loginov公式推导系统稳态响应振幅的解析表达式, 并据此研究系统的共振行为; 最后, 通过仿真实验验证理论结果的可靠性. 研究表明: 1)质量涨落噪声可诱导系统产生随机共振行为; 2)记忆性阻尼力可诱导系统产生参数诱导共振行为; 3)不同参数条件下, 系统表现出单峰共振、双峰共振等多样化的共振形式. 关键词: 黏性介质 质量涨落 阻尼记忆性 分数阶谐振子  相似文献   

9.
The dynamical-quantization approach to open quantum systems does consist in quantizing the Brownian motion starting directly from its stochastic dynamics under the framework of both Langevin and Fokker–Planck equations, without alluding to any model Hamiltonian. On the ground of this non-Hamiltonian quantization method, we can derive a non-Markovian Caldeira–Leggett quantum master equation as well as a non-Markovian quantum Smoluchowski equation. The former is solved for the case of a quantum Brownian particle in a gravitational field whilst the latter for a harmonic oscillator. In both physical situations, we come up with the existence of a non-equilibrium thermal quantum force and investigate its classical limit at high temperatures as well as its quantum limit at zero temperature. Further, as a physical application of our quantum Smoluchowski equation, we take up the tunneling phenomenon of a non-inertial quantum Brownian particle over a potential barrier. Lastly, we wish to point out, corroborating conclusions reached in our previous paper [A. O. Bolivar, Ann. Phys. 326 (2011) 1354], that the theoretical predictions in the present article uphold the view that our non-Hamiltonian quantum mechanics is able to capture novel features inherent in quantum Brownian motion, thereby overcoming shortcomings underlying the Caldeira–Leggett Hamiltonian model.  相似文献   

10.
With this work we elaborate on the physics of quantum noise in thermal equilibrium and in stationary nonequilibrium. Starting out from the celebrated quantum fluctuation-dissipation theorem we discuss some important consequences that must hold for open, dissipative quantum systems in thermal equilibrium. The issue of quantum dissipation is exemplified with the fundamental problem of a damped harmonic quantum oscillator. The role of quantum fluctuations is discussed in the context of both, the nonlinear generalized quantum Langevin equation and the path integral approach. We discuss the consequences of the time-reversal symmetry for an open dissipative quantum dynamics and, furthermore, point to a series of subtleties and possible pitfalls. The path integral methodology is applied to the decay of metastable states assisted by quantum Brownian noise.  相似文献   

11.
We consider an oscillator with a random mass for which the particles of the surrounding medium adhere to the oscillator for some random time after the collision, thereby changing its mass (Brownian motion with adhesion). For the case of dichotomous multiplicative noise, the first moment can diverge, indicating that the system is unable to reach a steady state.  相似文献   

12.
We consider an oscillator with nonlinear elasticity and nonlinear damping under the action of a Gaussian delta-correlated random force. The oscillator is treated as a Brownian particle in the corresponding potential profile. We analyze the problem using the analytical-numerical method based on solving the chain of differential equations for the statistical moments, which is broken in a certain manner. For the case of nonlinear elasticity, we find the dependence of the relaxation times of the mean values and variances of both the coordinates and velocities on the system parameters and noise intensity. By analogy, the relaxation of the probability characteristics of the oscillation amplitude is studied for a system with nonlinear damping. In both cases, the evolution of the Gaussian or Rayleigh probability distributions is described on the basis of the moment relaxation. Nizhny Novgorod Architectural and Construction University, Nizhny Novgorod, Russia. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 43, No. 4, pp. 468–478, September, 2000.  相似文献   

13.
We compare the thermodynamic entropy of a quantum Brownian oscillator derived from the partition function of the subsystem with the von Neumann entropy of its reduced density matrix. At low temperatures we find deviations between these two entropies which are due to the fact that the Brownian particle and its environment are entangled. We give an explanation for these findings and point out that these deviations become important in cases where statements about the information capacity of the subsystem are associated with thermodynamic properties, as it is the case for the Landauer principle.  相似文献   

14.
We demonstrate a novel technique for direct measurement of the oscillation frequency in an optical-tweezers trap. The technique uses the phenomenon of parametric resonance in an oscillator when the stiffness of the trapping potential is modulated. The trapped particle is a strongly damped oscillator; hence, the signature of parametric resonance is not an increase in the amplitude but an increase in the size of Brownian fluctuations. The trap frequency is measured with an accuracy of 0.1%, which is better than previous techniques and thus opens up new possibilities in experiments with optical tweezers.  相似文献   

15.
We discuss a multidimensional system driven by a non-Markovian quadratic a}oise.Using the MSR formalism and Novikov theorem, we derive approximately a lot of moments equations,the correlation functions and the relaxation times. As an illustration of our results we make con- Crete calculations for a Brownian bound oscillator system and for a liquid crystal model.  相似文献   

16.
We analyze the tunneling of a particle through a repulsive potential resulting from an inverted harmonic oscillator in the quantum mechanical phase space described by the Wigner function. In particular, we solve the partial differential equations in phase space determining the Wigner function of an energy eigenstate of the inverted oscillator. The reflection or transmission coefficients R or T are then given by the total weight of all classical phase-space trajectories corresponding to energies below, or above the top of the barrier given by the Wigner function.  相似文献   

17.
Transporting velocity of a loaded Brownian motor with entropic barrier is investigated in the presence of an asymmetric unbiased force. It is found that in the presence of the entropic barrier, the stall force of the Brownian motor does not change monotonously with temperature. The average velocity of the Brownian motor is a peaked function of thermal noise and amplitude of the asymmetric unbiased external force, which indicates that a definite fluctuation can facilitate the loaded Brownian motor moving. With the increase of the load, the range of temperature and amplitude of the asymmetric unbiased external force for Brownian motor working become smaller. The limited area for Brownian motor working is given on the load-temperature plane. The threshold of fluctuation for Brownian motor working is found, and the minimum of asymmetric parameter of unbiased external force for Brownian motor working is given.  相似文献   

18.
We investigate Brownian pump transport in the presence of an unbiased external force. The pumping system is embedded in a finite region bounded by two particle reservoirs. In the adiabatic limit, we obtain the analytical expressions of the current and the concentration ratio. We find that Brownian particles can be pumped through an asymmetric potential from a particle reservoir at low concentration to one at the same or higher concentration in the presence of an unbiased external force.   相似文献   

19.
Brownian surfers     
《Physics letters. A》1998,249(3):199-203
We show that under certain conditions a travelling-wave field of force can trap an underdamped Brownian particle. This effect is most efficient at zero temperature and for wave speeds smaller than a threshold value independent of the damping constant: the Brownian particle acts then as a Brownian surfer. Brownian surfers are sensitive to both the amplitude of the dragging field and possible asymmetries of its waveform (travelling ratchets).  相似文献   

20.
The one-dimensional Brownian motion and the Brownian motion of a spherical particle in an infinite medium are described by the conventional methods and integral transforms considering the entrainment of surrounding particles of the medium by the Brownian particle. It is demonstrated that fluctuations of the Brownian particle velocity represent a non-Markovian random process. A harmonic oscillator in a viscous medium is also considered within the framework of the examined model. It is demonstrated that for rheological models, random dynamic processes are also non-Markovian in character. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 2, pp. 66–74, February, 2009.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号