首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1 INTRODUCTIONItwasoftenencounteredthationizationofambient gasshouldoccurredwhena plasmawasproducedwithlaserablatingatarget .Manya  相似文献   

2.
A mechanism capable to provide a natural solution to two major cosmological problems, i.e. the cosmic acceleration and the coincidence problem, is proposed. A specific brane–bulk energy exchange mechanism produces a total dark pressure, arising when adding all normal to the brane negative pressures in the interior of galactic core black holes. This astrophysically produced negative dark pressure explains cosmic acceleration and why the dark energy today is of the same order to the matter density for a wide range of the involved parameters. An exciting result of the analysis is that the recent rise of the galactic core black hole mass density causes the recent passage from cosmic deceleration to acceleration. Finally, it is worth mentioning that this work corrects a wide spread fallacy among brane cosmologists, i.e. that escaping gravitons result in positive dark pressure.  相似文献   

3.
We study an effective relativistic mean-field model of nuclear matter with arbitrary proton fraction at finite temperature in the framework of nonextensive statistical mechanics, characterized by power-law quantum distributions. We investigate the presence of thermodynamic instability in a warm and asymmetric nuclear medium and study the consequent nuclear liquid–gas phase transition by requiring the Gibbs conditions on the global conservation of baryon number and electric charge fraction. We show that nonextensive statistical effects play a crucial role in the equation of state and in the formation of mixed phase also for small deviations from the standard Boltzmann–Gibbs statistics.  相似文献   

4.
The decay of a discontinuity in a two-component homogeneous gas mixture and the dispersion of a gas–particle mixture with a two-component carrier medium are numerically simulated. The mathematical model of the dynamics of heterogeneous media takes into account the interphase force interaction and interphase heat exchange. Experimental results known from the literature are compared with numerical results describing the dispersion of a gas–particle mixture in a shock tube.  相似文献   

5.
We consider the density fluctuations of an ideal Brownian gas of particles performing Lévy flìghts characterized by the indexf. We find that the fluctuations scale as N(t) tH, where the Hurst exponentH locks onto the universal value 1/4 for Lévy flights with a finite root-mean-square range (f>2). For Lévy flights with a finite mean range but infinite root-mean-square range (1相似文献   

6.
In conventional research on beam gas coulomb scattering(BGCS), only the related beam lifetime using the analytical method is studied. In this paper, using the particle-in-cell Monte Carlo collisions(PIC-MCC) method,we not only simulated the beam lifetime but also explored the effect of BGCS on the beam distribution. In order to better estimate the effect on particle distribution, we study the ultra-low emittance electron beam. Here we choose the He Fei Advanced Light Source. By counting the lost particles in a certain time, the corresponding beam lifetime we simulated is 4.8482 h/13.8492 h in x/y, which is very close to the theoretic value(5.0555 h /13.7024 h in x/y).By counting the lost particles relative to the collided particles, the simulated value of the loss probability of collided particles is 1.3431e-04, which is also very close to the theoretical value(1.3824e-04). Besides, the simulation shows there is a tail in the transverse distribution due to the BGCS. The close match of the simulation with the theoretic value in beam lifetime and loss probability indicates our simulation is reliable.  相似文献   

7.
TheoryofdischargesectionalizedalongagasflowCHENTao;QIUJunlin(LaserInstituteofHuazhongUniversityofScience&Technology,mahan4300...  相似文献   

8.
9.
The physics and chemistry of nonlinearly oscillating acoustic cavitation bubbles are strongly influenced by the dissolved gas in the surrounding liquid. Changing the gas alters among others the luminescence spectrum, and the radical production of the collapsing bubbles. An overview of experiments with various gas types and concentration described in literature is given and is compared to mechanisms that lead to the observed changes in luminescence spectra and radical production. The dissolved gas type changes the bubble adiabatic ratio, thermal conductivity, and the liquid surface tension, and consequently the hot spot temperature. The gas can also participate in chemical reactions, which can enhance radical production or luminescence of a cavitation bubble. With this knowledge, the gas content in cavitation can be tailored to obtain the desired output.  相似文献   

10.
We explore a new connection between Seiberg–Witten theory and quantum statistical systems by relating the dual partition function of SU(2) Super Yang–Mills theory in a self-dual \(\Omega \) background to the spectral determinant of an ideal Fermi gas. We show that the spectrum of this gas is encoded in the zeroes of the Painlevé \(\mathrm{III}_3\) \(\tau \) function. In addition, we find that the Nekrasov partition function on this background can be expressed as an O(2) matrix model. Our construction arises as a four-dimensional limit of a recently proposed conjecture relating topological strings and spectral theory. In this limit, we provide a mathematical proof of the conjecture for the local \({\mathbb P}^1 \times {\mathbb P}^1\) geometry.  相似文献   

11.
The one-dimensional boson gas with -function interaction is modified to include arbitrary pseudopotential interaction. The system is shown to be solvable by the Bethe Ansatz for certain classes of pseudopotential.  相似文献   

12.
We derive a partition function for the Lund fragmentation model and compare it with that of a classical gas. For a fixed rapidity “volume” this partition function corresponds to a multiplicity distribution which is very close to a binomial distribution. We compare our results with the multiplicity distributions obtained from the JETSET Monte Carlo for several scenarios. Firstly, for the fragmentation vertices of the Lund string. Secondly, for the final state particles both with and without decays. Received: 27 August 1998 / Published online: 15 October 1998  相似文献   

13.
Stochastic classical trajectory simulations were used to study the efficiency of the energy exchange at the gas–liquid interface. Self-assembled monolayers (SAM) of long-chain functionalized molecules were used to mimic the liquid surface. Since the molecules in the monolayers are anchored by only one end, they retain some of the mobility that they have in the liquid but lose all their fluidity. The corrugation of the surface and the stiffness of the interface were tuned by varying the length of the molecules in the monolayers. The use of longer molecules leads to increased corrugation of the surface and provides additional dissipation channels that promote more efficient momentum and energy accommodation, increase the translational–rotational energy interconversion and enhance trapping. However, this “length effect” appears to saturate, as no further significant changes are observed in those properties when the monolayer's molecules's length is elongated from six to nine carbons. This saturation effect suggests that, even though monolayers can provide some of the mobility observed in liquid surfaces, they lack the energy dissipation channel provided by the fluidity of the liquid.  相似文献   

14.
This work analyzes the equilibrium between a liquid and a gas over this liquid separated by an interface. Various gas forms exist inside the liquid: dissolved gas molecules attached to solvent molecules, free gas molecules, and gaseous bubbles. Thermodynamic equilibrium is maintained between two phases; the first phase is the liquid containing dissolved and free molecules, and the second phase is the gas over the liquid and bubbles inside it. Kinetics of gas transition between the internal and external gas proceeds through bubbles and includes the processes of bubbles floating up and bubble growth as a result of association due to the Smoluchowski mechanism. Evolution of a gas in the liquid is considered using the example of oxygen in water, and numerical parameters of this system are given. In the regime under consideration for an oxygen–water system, transport of oxygen into the surrounding air proceeds through micron-size bubbles with lifetimes of hours. This regime is realized if the total number of oxygen molecules in water is small compared with the numbers of solvated and free molecules in the liquid.  相似文献   

15.
In this paper, we study the effects of Lorentz Symmetry Breaking on the thermodynamic properties of ideal gases. Inspired by the dispersion relation coming from the Carroll–Field–Jackiw model for Electrodynamics with Lorentz and CPT violation term, we compute the thermodynamics quantities for a Boltzmann, Fermi–Dirac and Bose–Einstein distributions. Two regimes are analyzed: the large and the small Lorentz violation. In the first case, we show that the topological mass induced by the Chern–Simons term behaves as a chemical potential. For Bose–Einstein gases, a condensation in both regimes can be found.  相似文献   

16.
We consider a trapped ultra-cold gas of (non-condensed) bosons with two internal states (described by a pseudo spin) and study the stability of a longitudinal pseudo spin polarization gradient. For this purpose, we numerically solve a kinetic equation corresponding to a situation close to the experiment at JILA [1]. It shows the presence of Castaings instability of transverse spin polarization fluctuations at long wavelengths. This phenomenon could be used to create spontaneous transverse spin waves.Received: 1st October 2002, Published online: 15 July 2003PACS: 03.75.Nt Other Bose-Einstein condensation phenomena - 51.10.+y Kinetic and transport theory of gases - 75.30.Ds Spin wavesO. Prévoté: Present address: Université de Cergy-Pontoise, Département de Physique, 5 mall Gay Lussac, Neuville-sur-Oise, 95031 Cergy-Pontoise, France.  相似文献   

17.
18.
We report an effect of enhanced emission of laser generated plume in gas ambi-ent.Nonreactive argon gas was used in the experiment of UV laser ablation of copper plate.The emission of Cu atoms from the plume was increased more than the times.The emission in-tensity is sensitive to the gas pressure,but in a certain region of gas pressure,the enhanced ef-fect can be controlled stably.For the emission lines from other element,Zn,in the plume,the intensities are subjected to the same factor of increasement.  相似文献   

19.
We investigate the ballistic transport properties of an electron traversing through a two-dimensional electron gas with the Rashba and Dresselhaus spin–orbit coupling (R–D SOC) coexistent. A nonzero incident angle is considered. The relation between the transmission and the incident angle, the interfacial scattering strength, the length of the SOC region and the SOC intensity are revealed. The transmission strength decays when the incident angle is larger than a critical angle. The transport spin polarization is remarkably modulated by the coaction of the two types of SOC.  相似文献   

20.
A possibility of conversion electron Mössbauer spectroscopy for determining the gas molecular state is shown. For acceleration of gas interaction with active surface the thin iron layer enriched with 57Fe was applied on aluminum foil and gas discharge is used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号