首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
薄膜生长中的表面动力学(Ⅱ)   总被引:10,自引:0,他引:10  
王恩哥 《物理学进展》2003,23(2):145-191
本文较全面地从理论上研究了薄膜生长过程中原子在表面上的各种动力学表现,涉及的内容包括亚单层生长时,原子在表面上的扩散,粘接,成核,以及已经形成的原子岛之间的相互作用,兼并,失稳,退化等一系列过程。在第一部分(即0—6章,刊登在《物理学进展》23卷1期上)介绍了薄膜生长动力学的基础之后,从第7章开始我们侧重研究一个在向同性和各向异性表面都普遍成立的原子岛尺寸大小及密度分布的标度定律;建立了一套研究在各向同性和各向异性表面上二维原子岛退化过程的广义动力学标度理论。基于对层间质量扩散通道的研究,本文提出了两种不同的原子下跃机制,既任意跃迁机制和选择跃迁机制,并做了进一步的实验验证。利用这一新的层间质量扩散机制,我们成功地解释了实验上观测到的三维原子岛的退化规律。更加有趣的是,本文讨论了应力对岛的形状和各种动力学规律的影响。在最后我们还提出了一个利用凝聚能转化来控制二维原子岛生长的方法,其目的是希望能够找到一种人为有效地在表面上制备低维量子结构的方法。  相似文献   

2.
王恩哥 《物理学进展》2011,23(2):145-191
本文较全面地从理论上研究了薄膜生长过程中原子在表面上的各种动力学表现 ,涉及的内容包括亚单层生长时 ,原子在表面上的扩散 ,粘接 ,成核 ,以及已经形成的原子岛之间的相互作用 ,兼并 ,失稳 ,退化等一系列过程。在第一部分 (即 0~ 6章 ,刊登在《物理学进展》2 3卷 1期上 )介绍了薄膜生长动力学的基础之后 ,从第 7章开始我们侧重研究一个在向同性和各向异性表面都普遍成立的原子岛尺寸大小及密度分布的标度定律 ;建立了一套研究在各向同性和各向异性表面上二维原子岛退化过程的广义动力学标度理论。基于对层间质量扩散通道的研究 ,本文提出了两种不同的原子下跃机制 ,既任意跃迁机制和选择跃迁机制 ,并做了进一步的实验验证。利用这一新的层间质量扩散机制 ,我们成功地解释了实验上观测到的三维原子岛的退化规律。更加有趣的是 ,本文讨论了应力对岛的形状和各种动力学规律的影响。在最后我们还提出了一个利用凝聚能转化来控制二维原子岛生长的方法 ,其目的是希望能够找到一种人为有效地在表面上制备低维量子结构的方法。  相似文献   

3.
In this paper we present a unified phase-field model for non-equilibrium growths of various three-dimensional metal islands on insulating surfaces. We introduce a phase-field variable to distinguish the island from the non-island regions and substrate and a density variable to describe local density of deposited adatoms. Two partial differential equations with appropriate boundary conditions, as the governing equations, are used to describe the evolution of the three-dimensional metal islands and the diffusion of adatoms. We solve the equations by using an adaptive mesh refinement method so that we can simulate the non-equilibrium growth of three-dimensional metal islands from tens of nanometers to several micrometers. We investigate the dependence of simulated results on the model parameters and experimental conditions. Equilibrium shape of such islands can be obtained through sufficient post-deposition relaxation. Experimental trends of island size and shape on various scales are obtained with reasonable parameters. This method should be a good approach to non-equilibrium growths of multi-scale three-dimensional metal islands.  相似文献   

4.
M.O. Jahma  I.T. Koponen 《Surface science》2007,601(23):5628-5634
We study the optimal conditions for nanoisland growth in ion beam assisted deposition (IBAD). This situation occurs when adatom islands remain small enough to prevent the onset of three-dimensional growth, while at the same time preventing ion-induced surface erosion. To this end, we develop a rate equation model of IBAD, which embodies continuous deposition of adatoms and creation of vacancies, recombination of vacancies at adatom island edges, as well as recombination of adatoms at vacancy island edges. These rate equations are solved by numerical simulations based on the particle coalescence method. To determine the optimal growth condition, we find the largest mean size of the vacancy islands leading to their survival. We show that at this onset between the rough and smooth layer-by-layer growth regimes there is a simple exponential relation between the largest size of the vacancy islands and the external control parameters of the growth.  相似文献   

5.
薄膜生长中的表面动力学(Ⅰ)   总被引:39,自引:0,他引:39  
本文较全面地从理论上研究了薄膜生长过程中原子在表面上的和种动力学表现,涉及的内容包括亚单层生长时,原子在表面上的扩散,粘接,成核,以及已经形成的原子岛之间的相互作用,兼并,失稳,退化等一系列过程,作为研究的基础。在本文的第一部分(即0-6章)中,我们首先介绍了目前这方面理论研究中所主要使用的各种方法。例如,第一性原理计算,分子动力学模拟。蒙特卡罗模拟。速率方程和过渡态(TST)理论等。基于这些研究。我们介绍给读者为什么原子成岛时在低温下选择分形状,而在高温时则选择紧致状。这一过程可以用经典的扩散子限制集聚理论(Diffusion-Limited Aggregation,DLA)。然而当有表面活性剂存在时形核的规律安全相反,由此提出了一个反应限制集聚理论(Reaction-Limited Aggregation,RLA),这两个理论目前可以很好的解释亚单层生长时的一般形核规律。接下来我们讨论了长程相互作用对生长初期原子形核的影响。并进一步得出了相应的标度理论。在第6章我们系统地研究了分了吸附对二维原子岛形状的控制性,从而提出了边-角原子扩散的对称破缺模型。  相似文献   

6.
本文较全面地从理论上研究了薄膜生长过程中原子在表面上的各种动力学表现 ,涉及的内容包括亚单层生长时 ,原子在表面上的扩散 ,粘接 ,成核 ,以及已经形成的原子岛之间的相互作用 ,兼并 ,失稳 ,退化等一系列过程。作为研究的基础 ,在本文的第一部分 (即0~ 6章 )中 ,我们首先介绍了目前这方面理论研究中所主要使用的各种方法。例如 ,第一性原理计算 ,分子动力学模拟 ,蒙特卡罗模拟 ,速率方程和过渡态 (TST)理论等。基于这些研究 ,我们介绍给读者为什么原子成岛时在低温下选择分形状 ,而在高温时则选择紧致状。这一过程可以用经典的扩散子限制集聚理论 (Diffusion_LimitedAggregation ,DLA)。然而当有表面活性剂存在时形核的规律完全相反 ,由此提出了一个反应限制集聚理论 (Reaction_LimitedAggregation,RLA)。这两个理论目前可以很好地解释亚单层生长时的一般形核规律。接下来我们讨论了长程相互作用对生长初期原子形核的影响 ,并进一步得出了相应的标度理论。在第 6章我们系统地研究了分了吸附对二维原子岛形状的控制性 ,从而提出了边 角原子扩散的对称破缺模型。  相似文献   

7.
Incident intensity, defined by the amount of particles deposited per pulse, is an important parameter in the film growth process of pulsed laser deposition (PLD). Different from previous models, we investigate the irreversible and reversible growth processes by using a kinetic Monte Carlo method and find that island density and film morphology strongly depend on pulse intensity. At higher pulse intensities, lots of adatoms instantaneously diffuse on the substrate surface, and then nucleation easily occurs between the moving adatoms resulting in more smaller-size islands. In contrast, at the lower pulse intensities, nucleation event occurs preferentially between the single adatom and existing islands rather than forming new islands, and therefore the average island size becomes larger in this case. Additionally, our results show that substrate temperature plays an important role in film growth. In particular, it can determine the films shape and weaken the effect of pulse intensity on film growth at the lower temperatures by controlling the mobility rate of atoms. Our results can match the related theoretical and experimental results.  相似文献   

8.
Many experimental results show that surface roughness of thin films can increase, decrease, stay constant or pass through the minimum with the change in substrate temperature, energy of arriving atoms or assisted beam (electrons, photons, ions), depending on material and interval of variation of those parameters. The aim of this paper is to explain and analyze this non-monotonous behavior of surface roughness by proposed kinetic model. The model is based on rate equations and includes processes of surface diffusion of adatoms, nucleation, growth and coalescence of islands in the case of thin films growth in Volmer-Weber mode. It is shown by modeling that non-monotonous dependence of surface roughness on the factors influencing energy of adatoms (e.g. temperature, assisted beam irradiation, accelerating voltage) occurs as a result of interplay between diffusion length of adatoms and size of islands, because both parameters depend on energy of adatoms. Variation of island size and diffusion length results in atomic jumps from islands forming rougher or smoother surface. The functions of surface roughness, island size, island density on diffusion length of adatoms and on other parameters are calculated and analyzed in this work.  相似文献   

9.
Scanning tunneling microscopy is used to study the epitaxial growth of silicon on Si(111)-(7×7) by Chemical Vapour Deposition (CVD) of disilane (Si2H6) at elevated substrate temperatures directly during the growth process. Different kinetic processes, as island nucleation, growth and coarsening and step flow have directly been imaged as a function of temperature and Si2H6 flow. On a substrate with a low defect concentration several growth modes depending on the flux and the total coverage are distinguished: the formation of multi-level islands as a transient mode leaving the substrate partially uncovered up to 20 bilayers, a transition to layer-by-layer growth when the multi-level islands initially formed coalesce and the formation of three-dimensional islands with tetrahedral shape at higher growth rates which are only metastable due to the presence of hydrogen at the surface. The equilibrium shape of two-dimensional islands is a hexagon whereas the kinetically influenced shape during growth is triangular.  相似文献   

10.
We present a rate equation model for submonolayer island growth under conditions where hyperthermal deposition techniques such as low-energy ion deposition are employed to achieve smooth layer-by-layer growth. By asymptotic analysis, we demonstrate that the model exhibits stationary behavior with well-defined dynamic and growth exponents beta and chi, respectively, in the limit of small and high detachment rates. We verify these predictions by using the particle coalescence simulation method. The simulations reveal the existence of a relatively sharp transition regime with an increasing detachment rate of adatoms from high values of the growth exponent beta approximately 1 to much smaller values of beta determined by detachment and island diffusion processes. Our numerical results for the island size distribution indicate an anomalously high number of small islands, in agreement with available experimental data.  相似文献   

11.
Deposition of fullerenes on the CaF(2)(111) surface yields peculiar island morphologies with close similarities to previous findings for (100) surfaces of other ionic crystals. By means of noncontact atomic force microscopy we find a smooth transition from compact, triangular islands to branched hexagonal islands upon lowering the temperature. While triangular islands are two monolayers high, hexagonal islands have a base of one monolayer and exhibit a complicated structure with a second-layer outer rim and trenches oriented towards the interior. By developing a kinetic growth model we unravel the microscopic mechanisms of the structure formation.  相似文献   

12.
Epitaxial islands grown on various substrates are usually strained because of differences in lattice constants of the materials of the island and the substrate. Shape transition in the growth of strained islands has been proposed as a mechanism for strain relief and a way to form self-organized quantum wires. Shape transition usually leads to an elongated island growth. However, an elongated island growth may also be due to an anisotropic diffusion of material, the anisotropy being imposed by the symmetry of the substrate surface. In the present example, growth of gold silicide wire-like nanostructures on a Si(1 1 0) surface has been investigated by photoemission electron microscopy (PEEM). Growth of elongated unidirectional gold silicide islands, with an aspect ratio as large as 12:1, has been observed by PEEM following gold deposition on the Si substrate and subsequent annealing at the Au-Si eutectic temperature. Distribution of the width and the length of the gold silicide islands as a function of island area shows a feature similar to that for the shape transition. However, detailed investigations reveal that the elongated growth of gold silicide islands is rather mainly due to anisotropic diffusion of gold due to the twofold symmetry of the (1 1 0) surface of the Si substrate.  相似文献   

13.
Island nucleation and growth during thin-film epitaxy is typically described using mean-field rate equations, which can be solved to predict the density of stable islands as a function of the deposition rate and the diffusivity of an isolated adatom. Recent theoretical and experimental studies indicate that medium- and long-range interactions between adatoms may change the simple picture that nucleation theory provides, because the presence of these interactions invalidates some of its assumptions. In this work, we investigate the ramifications of medium-range, substrate-mediated interactions for aspects of island nucleation and growth. The interactions are quantified for Ag on a strained Ag (111) substrate using density-functional-theory calculations. We discuss our incorporation of these interactions into a kinetic Monte Carlo model to study thin-film epitaxy. The simulated thin-film growth is compared to predictions by standard nucleation theory. We discuss features of island nucleation and growth that are actuated by the presence of medium-range interactions. Received: 30 April 2001 / Accepted: 23 July 2001 / Published online: 3 April 2002  相似文献   

14.
Growth mechanism and morphology of Ge on Pb covered Si(111) surfaces   总被引:1,自引:0,他引:1  
We study the mechanism and surface morphology in epitaxial growth of Ge on Pb covered Si(111) using a scanning tunneling microscope (STM). We find that Ge adatoms have a very large diffusion length at room temperature. The growth is close to perfect layer-by-layer for the first two bilayers. Surface roughness increases gradually with the film thickness, but no 3D islands are found at room temperature. For growth at 200°C, 3D Ge islands appear after completion of the second bilayer. At room temperature, we believe, the Pb layer enhances surface diffusion and the descending-step motion of Ge adatoms, but the ascending-step motion is hindered and thus 3D island growth is suppressed.  相似文献   

15.
A theoretical model for the Volmer-Weber growth of three-dimensional metal islands is proposed, with a dipolar island edge-edge interaction. The existence of such an island edge effect makes the island shape dependent on island size. Furthermore, it induces a stable island size against coarsening, leading to self-assembled islands of uniform size. The dependence of the stable island size on total film coverage is shown to be different for nonstrained versus strained islands, in the regime of strong island-island interaction.  相似文献   

16.
Using molecular dynamics simulation and modified analytic embedded-atom method, we have investigated the self-diffusion of clusters on a tungsten (110) surface. As compared to the linear-chain configuration, the close-packed islands for tungsten clusters containing more than nine adatoms have been predicted to be more stable with the relatively lower binding energies. The migration energies show an interesting and oscillating behavior with increasing cluster size. The tetramer, hexamer and octamer have obviously higher migration energies than the others. The different atomic configurations and diffusion mechanisms have been determined during the diffusion processes. It is clear that the dimer-shearing mechanism occurs inside the hexamer, while it occurs at the periphery of heptamer. The successive hopping mechanism of individual atom is of critical importance in the migration of the clusters containing five or fewer adatoms. In addition, the diffusion of a cluster with nine adatoms is achieved through the changes of the cluster shape.  相似文献   

17.
The diffusion growth of a flat cylindrical island of a new phase during deposition of a substance on a crystal surface is considered. The stability of a growing island to small disturbances of its shape is analyzed with due regard for the boundary kinetics of adatoms at the island interface for the case in which the island radius is small compared to the characteristic diffusion length of the adatoms. The threshold island radii are determined above which the amplitude of the shape distortion and the amplitude of the relative deformation of the island shape increase.  相似文献   

18.
Self-assembled SiGe islands grown on Si(001) leave behind characteristic "footprints" that reveal that small islands shrink, losing material to nearby larger islands. The critical size, dividing shrinking from growing islands, corresponds to the pyramid-to-dome shape transition, consistent with "anomalous coarsening" While shrinking, {105}-faceted pyramids transform into truncated pyramids and ultimately into unfaceted mounds. The similarity to behavior during island growth indicates that island shape and facet formation are thermodynamically determined.  相似文献   

19.
《Physica A》2004,331(1-2):189-197
We present a model equation that describes nucleation and growth of hemispherical nanoclusters or islands deposited on a substrate for the small surface coverage case. The model is formulated in terms of a set of rate equations for the island sizes, combined with the time-dependent behavior of supersaturation and island nucleation rate. As an example to demonstrate the usefulness of the model, we study effects of the deposition rate of adatoms on the nanocluster growth. Large-scale computer simulation results show that the broadness of island size distribution is a decreasing function of the deposition rate for small rates, and bimodal distributions are obtained for large rates.  相似文献   

20.
On (1 1 1) islands of platinum as well as iridium self-adsorbed on (1 1 1) planes, it is now established that there are interior barriers impeding the movement of adatoms from the inner region to the steps of the island. We have carried out Monte Carlo simulations of adatoms migrating on such islands to establish the effect of interior barriers on the rate at which adsorbed atoms nucleate to form dimers rather than incorporate into the steps of the island. It is found that interior barriers significantly increase the rate at which dimers are created by collisions of two adatoms, and that the presence of additional step-edge barriers further raises the rate of dimer nucleation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号