首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Q-switched Nd:YAG laser transversely pumped with a 300-W quasi-cw diode generated pulses at 1.06 7m with intracavity energies of up to 10 mJ. Intracavity Raman shifting in a 60-mm-long Ba(NO3)2 crystal led to pulses with energies of 2.5 mJ at 1197 nm. The output pulse duration was reduced to 8.5 ns compared to 50 ns at the fundamental wavelength. Beam quality improvement was observed. A NaBrO3 Raman laser generated pulse energies of 0.4 mJ at 1163 nm with a crystal of only 18 mm length. The Raman radiation was frequency doubled into the yellow spectral region from 580 nm to 599 nm, which is difficult to reach with other solid-state lasers.  相似文献   

2.
DirectGenerationofTunableUVPicosecondLaserPulsesUsingSpectrotemporalSelectionNguyenDaiHung1)YusaburoSegawa(PhotodynamicResea...  相似文献   

3.
We demonstrate the generation of waveform-controlled laser pulses with 1?mJ pulse energy and a full-width-half-maximum duration of ~4 fs, therefore lasting less than two cycles of the electric field oscillating at their carrier frequency. The laser source is carrier-envelope-phase stabilized and used as the backbone of a kHz repetition rate source of high-harmonic continua with unprecedented flux at photon energies between 100 and 200?eV (corresponding to a wavelength range between 12-6?nm respectively). In combination we use these tools for the complete temporal characterization of the laser pulses via attosecond streaking spectroscopy.  相似文献   

4.
Subpicosecond pulses at a fixed wavelength produced with a low-Q cavity dye laser pumped by a single, nanosecond laser (Q-switched Nd:YAG) are converted into tunable high-power sub-100 femtosecond pulses by generation, spectral selection, amplification and compression of a supercontinuum. The tunable, chirped, high-energy pulses obtained are compressed with a prism pair. Energies up to 50 J in sub-100 fs pulses were obtained in the 540 to 650 nm range using 40 mJ of the Nd: YAG-laser pumping pulses at 532 nm. The whole sub-100 fs system including the low-Q dye laser uses only one Nd:YAG laser as a pump source.  相似文献   

5.
Temporal and spectral characteristics of pulses resulting from second-harmonic generation of 120-fs amplified Ti:sapphire laser pulses up to 0.1 mJ at a wavelength of 815 nm in type I KDP crystal were experimentally and theoretically analyzed. Widely different behaviors were observed, according to the sign of the phase mismatch. Comparison between the theoretical simulation and experimental data demonstrates that the competition between third- and second-order nonlinear phenomena strongly modifies the structure of the pulses generated.  相似文献   

6.
Stimulated electronic Raman scattering in Ba vapour is used to efficiently convert the output of a XeCl excimer laser (308 nm) to the blue region (475 nm). Photon conversion efficiencies of up to 20% and output energies in the blue greater than 5 mJ are obtained. The multi-line structure of the XeCl laser emission is reproduced in the generated Stokes spectrum.  相似文献   

7.
沈忠伟  王兆华  范海涛  秦爽  滕浩  何鹏  魏志义 《物理学报》2014,63(10):104211-104211
针对高能量千赫兹重复频率飞秒激光的应用需求,设计了一套采用线性再生腔结构的高效率飞秒钛宝石激光啁啾脉冲放大系统.通过优化腔型设计,在重复频率为1 kHz、单脉冲能量为20 mJ的527 nm激光抽运下,将展宽后的800 nm啁啾脉冲激光的能量放大到5.8 mJ,对应斜效率达到30.7%.进一步通过色散补偿压缩脉冲宽度,获得了单脉冲能量为4 mJ、脉冲宽度为45.7 fs的输出,稳定性测量表明激光的能量抖动仅为0.18%(均方根值).  相似文献   

8.
We demonstrate efficient generation of continuous spectrum centered at 400 nm from solid thin plates. By frequency doubling of 0.8 mJ, 30 fs Ti:sapphire laser pulses with a BBO crystal, 0.2 mJ, 33 fs laser pulses at400 nm are generated. Focusing the 400-nm pulses into 7 thin fused silica plates, we obtain 0.15 mJ continuous spectrum covering 350-450 nm. After compressing by 3 pairs of chirped mirrors, 0.12 mJ, 8.6 fs pulses are achieved.To the best of our knowledge,this is the first time that sub-10-fs pulses centered at 400 nm are generated by solid thin plates, which shows that spectral broadening in solid-state materials works not only at 800 nm but also at different wavelengths.  相似文献   

9.
3+ :YAG laser with 5th harmonic generator, generating 16 ps duration pulses at 213 nm, with energies up to 0.5 mJ. Experimental results concerning the action of laser pulses, as well as the effects of residual pressure on the cleanliness of the photocathodes surface are presented and discussed. Influence of laser pulses and residual pressure on the work function of the metal are also investigated. Received: 15 April 1996/Accepted: 5 November 1996  相似文献   

10.
An over 300 nm tunable broadband noncollinear optical parametric amplification in visible scale as well as the generation of blue pump pulses in one BBO crystal are demonstrated. Micro-joule energies are achieved in the signal branch, and the signal central wavelength can be tuned from 475 to 800 nm. The near-transform-limited sub-50 fs pulse duration is attainable over the whole tuning range after compression by a pair of prisms.  相似文献   

11.
Laser pulses with energies of as much as 1 mJ were generated at a wavelength of 46.9 nm by single-pass amplification in a 34.5 cm-long Ne-like Ar capillary discharge plasma. The large gain-length product of this plasma column allows for soft-x-ray amplification in a highly saturated regime, resulting in efficient energy extraction. Average laser output pulse energy of 0.88 mJ and peak power of 0.6 MW were obtained at a repetition rate of 4 Hz. With an estimated peak spectral brightness of approximately 1x10(23)photons /(s mm(2)mrad> (2)0.01% bandwidth) this tabletop laser is one of the brightest soft-x-ray sources to date.  相似文献   

12.
In this paper, a four-wavelength electro-optic (E-O) Q-switched solid-state laser system was presented. This laser system only use one Nd:YAP laser crystal, which irradiates 1079.5 nm and 1341.4 nm fundamental wavelengths. Both of these wavelength lasers and their second harmonic generation (SHG) compose a four-wavelength Nd:YAP Q-switched laser. The Q-switched output energies of 277 mJ for 1079.5 nm and 61 mJ for 539.8 nm and that of 190 mJ for 1341.4 nm and 51 mJ for 670.7 nm wavelengths were achieved. The pulse durations of 1079.5 and 539.8 nm lasers and that of 1341.4 and 670.7 nm lasers are 20 and 40 ns, respectively. Due to this laser system has the larger chance and convenience for selecting the wavelengths and operation modes by moving a stepping motor and controlling the Q-switched devices, it will broaden applications in the fields of laser cosmetology, dermatotis therapy, material processing and laser display etc.  相似文献   

13.
We experimentally demonstrate that by longitudinally pumping 2 mm long molybdenum preformed plasma with high-intensity 475 fs duration laser pulse, a highly directive soft-x-ray laser at 18.9 nm wavelength is generated. The divergence of the beam is evaluated to be of the submilliradian order, and only requires a pump laser energy of 150 mJ.  相似文献   

14.
A 0.5 cm–1 bandwidth injection-locked KrF laser pumps a rare-gas Brillouin cell to produce a reflected pulse with a leading edge risetime of 1 ns, tunable from 248.1 to 248.7 nm. Consistent with Lamb theory of laser amplifiers, subsequent excimer amplification of this pulse produces an intense 500 ps spike on the pulse leading edge. Stimulated Raman scattering then separates the spike from the parent pulse, yielding a tunable short pulse at the first Stokes (S 1) wavelength. Varying the Raman cell length results in a variable Raman threshold and an adjustable short pulse duration: 250 ps pulses at energies of 3–4 mJ at 268 nm with a 50 cm methane cell and 350 ps, 5 mJ pulses from a 100 cm cell are measured with a streak camera. First pass Raman conversion of the spike toS 1 followed by second pass backward Raman amplification, where the parent 248 nm pulse serves as the pump beam for the reflectedS 1 pulse, yields simultaneousS 1 pulses of 20–25 mJ in the 800 ps range andS 2 pulses of 550 ps at 5–6 mJ near 290 nm. This laser will avoid collision effects during laser excitation and enable quantitative, single pulse imaging of OH radicals in turbulent combustion because of its high pulse energy.  相似文献   

15.
We report on high-energy picosecond pulse generation from a passively Q-switched and fiber-amplified microchip laser system. Initially, the utilized microchip lasers produce pulses with durations of around 100 ps at 1064 nm central wavelength. These pulses are amplified to energies exceeding 100 μJ, simultaneously chirped and spectrally broadened by self-phase modulation using a double stage amplifier based on single-mode LMA photonic crystal fibers at repetition rates of up to 1 MHz. Subsequently, the pulse duration of chirped pulses is reduced by means of nonlinear pulse compression to durations of 2.7 ps employing a conventional grating compressor and 4.7 ps using a compact compressor based on a chirped volume Bragg grating.  相似文献   

16.
We describe a tunable Ti:Sapphire regenerative amplifier which is used to amplify 120 fs pulses from a self-mode-locked Ti:Sapphire laser to energies in the range of 7–12 mJ from 760 nm to 855 nm. We have used three sets of cavity mirrors in the regenerative amplifier to vary the output wavelength of the laser.On leave from Institute of Laser Engineering, Osaka University, 2-6, Yamada-oka, Osaka 565, Japan (Fax: +81-6/877-4799)  相似文献   

17.
Digital holographic shape measurements using femtosecond laser pulses are reported. For contouring of very fast moving objects, the simultaneous generation of at least two spectrally separated ultrashort pulses is required. To deliver this particular spectral signature at high pulse energies, a chirped-pulse Ti:sapphire laser amplifier was modified to emit two spectrally separated pulses with energies above 1 μJ each. The wavelength separation of these pulses was adjustable within the 50 nm gain bandwidth, cutting out two distinct wavelength peaks by a variable double-slit assembly in a prism sequence. A Michelson-type interferometer was employed to perform the two-wavelength contouring. The phases of the holograms and the phase differences are calculated numerically, which allow us to deduce the contour lines of the topology of the object. The suitability of the light source for digital holography is demonstrated with contouring of stationary objects and the potential for high-speed applications is indicated. PACS 42.40.-i; 42.60.By  相似文献   

18.
We report on a Yb:YAG Innoslab laser amplifier system for generation of subpicsecond high energy pump pulses for optical parametric chirped pulse amplification (OPCPA) at high repetition rates. Pulse energies of up to 20 mJ (at 12.5 kHz) and repetition rates of up to 100 kHz were attained with pulse durations of 830 fs and average power in excess of 200 W. We further investigate the possibility to use subpicosecond pulses to derive a stable continuum in a YAG crystal for OPCPA seeding.  相似文献   

19.
The generation of high pulse and average power radiation in the eye-safe region (wavelength around 1.599 μm) by the third Stokes generation in a barium nitrate Raman laser was demonstrated by pumping with 10 ns pulses of a Nd:YAG laser. Converted pulse energy was up to 93 mJ (peak power was 10 MW) at a pump energy of 300 mJ, which corresponds to a quantum efficiency of 47%. The average output power of the third Stokes radiation was 1.8 W.  相似文献   

20.
奚坤  丁双红  张骏  王淑梅  刘永纳  王美芹 《光学学报》2012,32(9):914003-165
研究了外腔式PbWO4拉曼激光器在纳秒脉冲抽运下的输出特性。利用主动调Q的Nd:YAG激光器产生的脉冲宽度为31.4ns,最大输出能量为200mJ的1064nm激光作为抽运源。拉曼激光谐振腔采用的是平凹腔设计。测量了输出的拉曼光脉宽与抽运能量的关系,分析了输出的拉曼光脉冲波形图和光谱图,测量了输出的拉曼光脉冲能量与抽运能量的关系,计算了转换效率与抽运能量的关系。当注入抽运光能量达到42mJ时,得到了一阶斯托克斯光脉冲的最大能量和转换效率分别为10mJ和24%,获得外腔式PbWO4拉曼激光器的一阶斯托克斯光脉冲波长为1177.6nm,典型的一阶斯托克斯光脉冲脉宽为20ns。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号