首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The proton alignment in 82Sr has been investigated by the g-factor measurements of the ground state rotational band levels up to spin I = 8+. The g-factors were measured by a transient-magnetic-field ion implantation perturbed angular distribution method. The obtained g-factors increase with the increasing of spin along the band and clearly show the g9/2 proton alignment that starts at I = 6+.  相似文献   

2.
Magnetic rotation in 82Rb has been investigated for the first time by g-factor measurement of intra-band states of the magnetic-rotational band built on the 11-state. The g-factors were measured by a TMF-IMPAD method and calculated by a semi-classical model of independent particle angular momentum coupling assumption. The g-factors and deduced shears angles decrease with the increasing of spin along the band, illustrating a step-by-step alignment of the valence protons and neutrons. The rapid alignment of the valence neutrons leads to a decrease of g-factors. The present results vividly reveal the shears mechanism of magnetic rotation.  相似文献   

3.
The g-factors of the positive parity rotational states up to spin I = 8^+ for the ground state band in even-even nuclei S2Sr have been measured by a transient-magnetic-field ion implantation perturbed angular distribution method. The experimentally measured 9-factors increase with the increasing spin along the band and show that the g9/2 proton aligns only and the alignment starts from I =6^+. The measured g-factors also indicate that the nuclei ^82Sr gain their spins by the quasi-proton alignment at higher spin.  相似文献   

4.
The g-factors of the intra-band states 12,13,14,15 in a magnetic-rotational band built on the 11 state in 82 Rb are measured for the first time by using a transient magnetic field-ion implantation perturbed angular distribution (TMF-IMPAD) method.The magnetic-rotational band in 82 Rb is populated by the 60 Ni(27 Al,4pn) 82 Rb reaction,and the time-integral Larmor precessions are measured after recoil implantation into a polarized Fe foil.The calculation of g-factors is also carried out in terms of a semi-classical model of independent particle angular momentum coupling on the basis of the four-quasiparticle configuration π(g 9/2) 2  π(p 3/2,f 5/2)  ν (g 9/2).The measured and calculated g-factors are in good agreement with each other.The g-factors and deduced shear angles decrease with the increase of spin along the band.This clearly illustrates the shear effect of a step-by-step alignment of the valence protons and neutrons in magnetic rotation.The semi-classical calculation also shows that the alignment of the valence neutron angular momentum is faster than that of the valence protons,which results in a decrease of g-factors with increasing spin.The present results provide solid evidence of the shear mechanism of magnetic rotation.  相似文献   

5.
The g-factors of some members of the ground state band and of the 2+ state in the %-vibrational band have been measured in 160,162,164Dy using the Coulomb Excitation Transient Field technique, induced by 58Ni projectiles at 230, 210 and 217 MeV, respectively. The g-factors in the ground state band are consistent with a constant value, while that of the 2+% states is about 20% larger in average than those in the ground state band. Results are discussed in the frame of the systematics in this nuclear region.  相似文献   

6.
In view of recent experimental progress on production and spectroscopy of neutron-rich isotopes of Dy with mass number A =166 and 168, we have made theoretical investigations on the structure of high spin states of164-170Dy isotopes in the cranked Hartree-Fock-Bogoliubov (CHFB) theory employing a pairingquadrupolehexadecapole model interaction. With the increase of neutron number the rotation alignment of the proton orbitals dominates the structure at high spins, which is clearly reflected in the spin dependence of the rotational g-factors. A particularly striking feature is the difference in the spin-dependent properties of166Dy as compared to that of164Dy  相似文献   

7.
With the increasing interest in Cu_2O-based devices for photovoltaic applications, the energy band alignment at the Cu_2O/ZnO heterojunction has received more and more attention. In this work, a high-quality Cu_2O/ZnO heterojunction is fabricated on a c-Al_2 O_3 substrate by laser-molecular beam epitaxy, and the energy band alignment is determined by x-ray photoelectron spectroscopy. The valence band of ZnO is found to be 1.97 eV below that of Cu_2O. A type-II band alignment exists at the Cu_2O/ZnO heterojunction with a resulting conduction band offset of 0.77 eV, which is especially favorable for enhancing the efficiency of Cu_2O/ZnO solar cells.  相似文献   

8.
The static and dynamic magnetic dipole moments of odd-mass and even-mass nuclei with 150R and intrinsic g-factors gK.  相似文献   

9.
实验上新合成的MoSi2N4(MSN)由于其独特的七原子层结构和电子特性引起了人们的广泛关注。本文搭建了一种由二维MSN与二维WSe2(WS)垂直堆垛而成的二维MSN/WS异质结,其表现出直接间隙半导体和I型能带排列的特性,具有1.46 eV的带隙。在异质结界面处存在一个由电荷耗尽层MSN指向电荷积累层WS微弱的内建电场。最后,通过施加双轴应变对二维MSN/WS异质结进行调控。发现在正双轴应变的作用下,MSN/WS异质结保持了原来直接带隙半导体和I型能带排列特性;在负双轴应变作用下,MSN/WS异质结由原来的直接带隙半导体转变为间接带隙半导体,当施加的负双轴应变达到-6%与-8%时,I型能带排列转变为Ⅱ型能带排列。  相似文献   

10.
Constructing two-dimensional (2D) van der Waals heterostructures (vdWHs) can expand the electronic and optoelectronic applications of 2D semiconductors. However, the work on the 2D vdWHs with robust band alignment is still scarce. Here, we employ a global structure search approach to construct the vdWHs with monolayer MoSi2N4 and wide-bandgap GeO2. The studies show that the GeO2/MoSi2N4 vdWHs have the characteristics of direct structures with the band gap of 0.946 eV and type-II band alignment with GeO2 and MoSi2N4 layers as the conduction band minimum (CBM) and valence band maximum (VBM), respectively. Also, the direct-to-indirect band gap transition can be achieved by applying biaxial strain. In particular, the 2D GeO2/MoSi2N4 vdWHs show a robust type-II band alignment under the effects of biaxial strain, interlayer distance and external electric field. The results provide a route to realize the robust type-II band alignment vdWHs, which is helpful for the implementation of optoelectronic nanodevices with stable characteristics.  相似文献   

11.
We report on our measurements of the Landé g-factors for rovibrational states in the 10V-band of carbon disulfide. Our improved accuracy enabled us to increase the measurements precision of previous studies and additionally determine the Landé g-factors for nearly all previously assigned transitions.  相似文献   

12.
The GaP-based dilute nitride direct band gap material Ga(NAsP) is gaining importance due to the monolithic integra- tion of laser diodes on Si microprocessors. The major advantage of this newly proposed laser material system is the small lattice mismatch between GaP and Si. However, the large threshold current density of these promising laser diodes on Si substrates shows that the carrier leakage plays an important role in Ga(NAsP)/GaP QW lasers. Therefore, it is necessary to investigate the band alignment in this laser material system. In this paper, we present a theoretical investigation to optimize the band alignment of type-I direct band gap GaNxAsyP1-x-y/GaP QWs on GaP substrates. We examine the effect of nitrogen (N) concentration on the band offset ratios and band offset energies. We also provide a comparison of the band alignment of type-I direct band gap GaNxAsyP1-x-y/GaP QWs with that of the GaNxAsyP1-x-y/Al2Ga1-2P QWs on GaP substrates. Our theoretical calculations indicate that the incorporations of N into the well and AI into the barrier improve the band alignment compared to that of the GaAsP/GaP QW laser heterostructures.  相似文献   

13.
The electron paramagnetic resonance (EPR) of Yb3+ ions in a KY(WO4)2 single crystal was investigated at T=4.2 K and fixed frequency of 9.38 GHz. The resonance absorption observed on the lowest Kramers doublet represents the complex superposition of three spectra, corresponding to the ytterbium isotopes with different nuclear moments. The EPR spectrum is characterized by a strong anisotropy of the g-factors. The temperature dependence of the g-factors is shown to be caused by the strong spin-orbital and orbital-lattice coupling. The resonance lines broaden with increasing temperature due to the short spin-lattice relaxation times.  相似文献   

14.
《Physics letters. A》2020,384(7):126150
Based on the first-principles method, we investigate the electronic structure of SnC/BAs van der Waals (vdW) heterostructure and find that it has an intrinsic type-II band alignment with a direct band gap of 0.22 eV, which favors the separation of photogenerated electron–hole pairs. The band gap can be effectively modulated by applying vertical strain and external electric field, displaying a large alteration of band gap via the strain and experiencing an indirect-to-direct band gap transition. Moreover, the band gap of the heterostructure varies almost linearly with external electric field, and the semiconductor-to-metal transition can be realized in the presence of a strong electric field. The calculated band alignment and the optical absorption reveal that the SnC/BAs heterostructure could present an excellent light-harvesting performance. Our designed heterostructure is expected to have great potential applications in nanoelectronic devices and photovoltaics and optical properties.  相似文献   

15.
Favourable band alignment and excellent visible light response are vital for photochemical water splitting. In this work, we have theoretically investigated how ferroelectric polarization and its reversibility in direction can be utilized to modulate the band alignment and optical absorption properties. For this objective, 2D van der Waals heterostructures (HTSs) are constructed by interfacing monolayer MoS2 with ferroelectric In2Se3. We find the switch of polarization direction has dramatically changed the band alignment, thus facilitating different type of reactions. In In2Se3/MoS2/In2Se3 heterostructures, one polarization direction supports hydrogen evolution reaction and another polarization direction can favour oxygen evolution reaction. These can be used to create tuneable photocatalyst materials where water reduction reactions can be selectively controlled by polarization switching. The modulation of band alignment is attributed to the shift of reaction potential caused by spontaneous polarization. Additionally, the formed type-II van der Waals HTSs also significantly improve charge separation and enhance the optical absorption in the visible and infrared regions. Our results pave a way in the design of van der Waals HTSs for water splitting using ferroelectric materials.  相似文献   

16.
Both epitaxial and amorphous ultra-thin alumina films were grown on a Cu-9 at.%Al(1 1 1) substrate by selective oxidation of Al in the alloy in ultra high vacuum. The crystallinity of the alumina films was controlled by oxidation temperature. The photoelectron spectra of Al 2p, O 1s and valence band were measured in-situ during oxidation. The influence of the crystallinity on the interface structure between the alumina films and the substrate was discussed by analyzing the Al 2p spectra composed of multiple peaks. The energy difference between the Fermi level of the substrate and the valence band maximum of the alumina films (band offset) was derived from the valence band spectra. The energy band alignment at the interface between each of the two alumina films and the substrate was revealed by combining the binding energy values of the core levels with the band offset values. The influence of the alumina crystallinity on the band alignment was discussed.  相似文献   

17.
PbI_2/MoS_2, as a typical van der Waals(vdW) heterostructure, has attracted intensive attention owing to its remarkable electronic and optoelectronic properties. In this work, the effect of defects on the electronic structures of a PbI_2/MoS_2 heterointerface has been systematically investigated. The manner in which the defects modulate the band structure of PbI_2/MoS_2, including the band gap, band edge, band alignment, and defect energy-level density within the band gap is discussed herein. It is shown that sulfur defects tune the band gaps, iodine defects shift the positions of the band edge and Fermi level, and lead defects realize the conversions between the straddling-gap band alignment and valence-band-aligned gap, thus enhancing the light-absorption ability of the material.  相似文献   

18.
A high-quality Ga2O3 thin film is deposited on an SiC substrate to form a heterojunction structure. The band alignment of the Ga2O3/6H-SiC heterojunction is studied by using synchrotron radiation photoelectron spectroscopy. The energy band diagram of the Ga2O3/6H-SiC heterojunction is obtained by analysing the binding energies of Ga 3d and Si 2p at the surface and the interface of the heterojunction. The valence band offset is experimentally determined to be 2.8 eV and the conduction band offset is calculated to be 0.89 eV, which indicate a type-II band alignment. This provides useful guidance for the application of Ga2O3/6H-SiC electronic devices.  相似文献   

19.
The band alignment at the In2S3/Cu2ZnSnS4 heterojunction interface is investigated by X-ray photoemission spectroscopy. In2S3 is thermally evaporated onto the contamination-free polycrystalline Cu2ZnSnS4 surface prepared by magnetron sputtering. The valence band offset is measured to be 0.46 ± 0.1 eV, which matches well with the valance band offset value 0.49 eV calculated using “transitivity” method. The conduction band offset is determined to be 0.82 ± 0.1 eV, indicating a ‘type I’ band alignment at the heterojunction interface.  相似文献   

20.
《中国物理 B》2021,30(9):97507-097507
Exploring two-dimensional(2 D) magnetic heterostructures is essential for future spintronic and optoelectronic devices.Herein,using first-principle calculations,stable ferromagnetic ordering and colorful electronic properties are established by constructing the VS_2/C_3 N van der Waals(vdW) heterostructure.Unlike the semiconductive properties with indirect band gaps in both the VS_2 and C_3 N monolayers,our results indicate that a direct band gap with type-Ⅱ band alignment and p-doping characters are realized in the spin-up channel of the VS_2/C_3 N heterostructure,and a typical type-Ⅲband alignment with a broken-gap in the spin-down channel.Furthermore,the band alignments in the two spin channels can be effectively tuned by applying tensile strain.An interchangement between the type-Ⅱ and type-Ⅲ band alignments occurs in the two spin channels,as the tensile strain increases to 4%.The attractive magnetic properties and the unique band alignments could be useful for prospective applications in the next-generation tunneling devices and spintronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号