首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamics of a vibrating string subjected to a constraint at one boundary is investigated in this paper. The constraint is applied by a scabbard that moves a small distance along the mean position of the string. The scabbard is moved instantaneously such that the position and the velocity of the string outside the scabbard is unaffected immediately after application of the constraint, whereas the length of the string covered by the scabbard is brought to rest. The constraint is removed by moving the scabbard back to its original position and the change in energy of the string is investigated for different values of scabbard travel distance and time of application of the constraint. Analytical and numerical simulation results are first provided for the string vibrating in the first mode, and then for a more general case where the string has arbitrary initial conditions. The results show that the energy of the string can increase or decrease depending on the time of application of the constraint for a given distance of travel of the scabbard. This provides the opportunity for active control of vibration of the string through direct physical interaction, using the scabbard as an actuator. A simple feedback control strategy is proposed and numerical simulation results are presented. These results indicate that although removal of the constraint does not change the energy of the string, the effectiveness of the control strategy depends on the time of removal of the constraint.  相似文献   

2.
The stability of vibrations of a mass that moves uniformly along an Euler-Bernoulli beam on a periodically inhomogeneous continuous foundation is studied. The inhomogeneity of the foundation is caused by a slight periodical variation of the foundation stiffness. The moving mass and the beam are assumed to be always in contact. With the help of a perturbation analysis it is shown analytically that vibrations of the system may become unstable. The physical phenomenon that lies behind this instability is parametric resonance that occurs because of the periodic (in time) variation of the foundation stiffness under the moving mass. The first instability zone is found in the system parameters within the first approximation of the perturbation theory. The location of the zone is strongly dependent on the spatial period of the inhomogeneity and on the weight of the moving mass. The larger this period is and/or the smaller the mass, the higher the velocity is at which the instability occurs.  相似文献   

3.
Yu. K. Bivin 《Technical Physics》2012,57(11):1569-1573
The mechanical characteristics of vibrating strings strained between rigid supports and a vibration-induced electric field are studied. Experiments are conducted with nylon, rubber, and metallic strings. Vibrations are excited by a pinch at different sites along the string. The motion of the string is filmed, and the attendant electric field is detected. Experimental data are analyzed under the assumption that the field is induced by unlike charges generated by the moving string. It is found that the field allows one to determine the time characteristics of the motion of the string and discriminate the types of its deformations. Young moduli observed under the static extension of thin nylon strings are compared with those calculated from the natural frequencies of vibration measured for differently strained strings. The mathematical pattern of the motion of the string is compared with the real situation.  相似文献   

4.
The paper herein deals with the study of the dynamic behaviour generated by the instability of the vibration of a loaded mass, uniformly moving along an Euler-Bernoulli beam on a viscoelastic foundation, induced by the anomalous Doppler waves excited in the beam. This issue is relevant for the case of modern trains travelling along a track with soft soil when the trains speed exceeds the phase velocity of the waves induced in the track. The model corresponds to a railway vehicle reduced to a loaded wheel running along a (half) track. The beam takes account of the bending stiffness of the rail and the mass of the track, including the mass of the rail, semi-sleepers and half of the ballast layer, where the viscoelastic foundation represents the subgrade. The model includes the wheel/rail Hertzian contact and it allows the simulation of the possibility of contact loss. The nonlinear equations of motion are integrated using a numerical approach based on the Green’s function method. When the vibration becomes unstable, the system evolution is a limit cycle characterised by a succession of shocks, due to the action of two opposite factors: the anomalous Doppler waves that pump energy at the interface between the moving mass and the beam, thus forcing the mass to take off, and the static load that push the mass downwards. The frequency of the shocks increases at higher velocity and the magnitude of the impact force decreases; the most dangerous velocity is the critical one, which represents the stability limit of the linear approximation of the motion equations. The transient behaviour that precedes the limit cycle appearance is being analysed. The Hertzian contact influences the time history of the limit cycle and the magnitude of the impact force and, therefore, it is essential to be included in the model. To the authors’ knowledge, this problem has never been dealt with.  相似文献   

5.
The mechanisms of passive mode locking and formation of ultrashort pulses in microwave electron oscillators with a bleaching absorber in the feedback loop have been analyzed. It is shown that in the group synchronism regime in which the translational velocity of particles coincides with the group velocity of the electromagnetic wave, the pulse formation can be described by the equations known in the theory of dissipative solitons. At the same time, the regimes in which the translational velocity of electrons differs from the group velocity and the soliton being formed and moving along the electron beam consecutively (cumulatively) receives energy from various electron fractions are optimal for generating pulses with the maximal peak amplitudes.  相似文献   

6.
邓艳平  田强 《大学物理》2007,26(4):58-62
分析了一维单原子链中与连续弦中的波包的演化过程.弦中的波包以恒定速度移动,且保持形状不变;而原子链中的波包在演化过程中形状不断地发生变化.通过比较分析一维单原子链与弦振动的色散关系,讨论了波包演化的不同以及离散的原子链到连续弦的过渡.  相似文献   

7.
The purpose of this paper is to study the free lateral responses of vertically translating media with variable length, velocity and tension, subject to general initial conditions. The translating media are modeled as taut strings with fixed boundaries. The problem can be used as a simple model to describe the lateral vibrations of an elevator cable, for which the length changes linearly in time, or for which the length changes harmonically about a constant mean length. In this paper an initial-boundary value problem for a linear, axially moving string equation is formulated. In the given model a rigid body is attached to the lower end of the string, and the suspension of this rigid body against the guide rails is assumed to be rigid. For linearly length variations it is assumed that the axial velocity of the string is small compared to nominal wave velocity and the string mass is small compared to car mass, and for the harmonically length variations small oscillation amplitudes are assumed and it is also assumed that the string mass is small compared to the total mass of the string and the car. A multiple-timescales perturbation method is used to construct formal asymptotic approximations of the solutions to show the complicated dynamical behavior of the string. For the linearly varying length analytic approximations of the exact solution are compared with numerical solution. For the harmonically varying length it will be shown that Galerkin?s truncation method cannot be applied in all cases to obtain approximations valid on long timescales.  相似文献   

8.
A method of searching for cosmic strings based on an analysis of the cosmic microwave background (CMB) anisotropy is presented. A moving straight cosmic string is shown to generate structures of enhanced and reduced brightness with a distinctive shape. The conditions under which a string can be detected by both CMB anisotropy and gravitational lensing in optical surveys are analyzed. For a relativistic string with a deficit angle of ~1″–2″, the amplitude of the generated anisotropy is shown to be ~15–30 μK.  相似文献   

9.
A collisional plasma flow moving along a magnetic field at a velocity lower than the speed of sound is considered. It has been found that stationary small perturbations increase downstream in the flow. The mechanism of the increase is related to the fact that subsonic ideal-plasma flows respond to external perturbations primarily by a change in the pressure of the plasma. As a result, the pressure under perturbation of the velocity changes so that the stationary flow is decelerated and accelerated if the force is directed along and against the velocity, respectively. This phenomenon can be explained under the assumption that the effective mass of the plasma is negative. If the velocity of the flow is inhomogeneous in the transverse direction, the viscosity force plays a role of the external perturbing force. In this case, the effective transverse viscosity coefficient, which should be treated as negative, can be renormalized instead of the effective mass. The sign of the effective specific heat or the effective transverse thermal conductivity coefficient changes similarly if the velocity of the flow is lower than the speed of sound but is higher than the thermal velocity of ions calculated from the sum of the ion and electron temperatures. A downstream increase in the stationary perturbations is called in this work spatial instability. The downstream growth rate has been determined. The numerical analysis of the evolution of perturbations illustrates the development of the spatial instability of subsonic collisional plasma flows moving along the magnetic field.  相似文献   

10.
The stability of vibration of a bogie uniformly moving along a Timoshenko beam on a viscoelastic foundation has been studied. The bogie has been modelled by a rigid bar of a finite length on two identical supports. Each support consists of a spring and a dashpot connected in parallel. The upper ends of the supports are attached to the bar, whilst the lower ends are mounted onto concentrated masses through which the supports interact with the beam. It is assumed that the masses and the beam are always in contact. It is shown that when the velocity of the bogie exceeds the minimum phase velocity of waves in the beam, the vibration of the system may become unstable. The instability region is found in the space of the system parameters with the help of the D-decomposition method and the principle of the argument. An extended analysis of the effect of the bogie parameters on the model stability has been carried out.  相似文献   

11.
The phase velocities of plane waves in a pipe filled with a moving acoustic medium are studied for different laws of flow velocity variation along the pipe radius. The wave equation is solved by the discretization method, which breaks the entire pipe volume into individual cylinders under the assumption that, within each of the cylinders, the flow velocity of the medium is constant. This approach makes it possible to reduce the solution to the wave problem to solving Helmholtz equations for individual cylinders. Based on boundary conditions satisfied at the boundaries between neighboring cylinders, a homogeneous system of linear algebraic equations is obtained. From this system, with the use of the scattering matrices, a simple dispersion equation is derived for determining the phase velocities of plane waves. The stability of the numerical solution to the dispersion equation with respect to the number of cylinders is investigated. The phase velocities of quasi-homogeneous and inhomogeneous waves in a pipe are numerically calculated and analyzed for different velocities of a moving medium and different laws of flow velocity variation along the radius. It is shown that the variation that occurs in the phase velocity of a homogeneous plane wave in a pipe due to the motion of the medium is identical to the mean flow velocity for different laws of flow velocity variation along the radius. For inhomogeneous plane waves, the phase velocity increment exceeds the mean flow velocity several times and depends on both the law of wave amplitude distribution along the radius and the law of the flow velocity variation along the radius.  相似文献   

12.
In this paper transverse vibration of an axially moving viscoelastic string with a viscous damper at one end is investigated analytically. The string is assumed to be travelling with constant velocity and the length of string is constant or time varying. The linear and nonlinear mathematical models are derived using the Lagrangian function and implemented using a finite element method. The method considers a time varying state space function applied to the linear model, the Newmark-Beta method is used to solve the response for the nonlinear problem numerically. The case of energy dissipated by a viscoelastic damper at one end of the string for different axial string velocities is considered. When a disturbance arrives at the boundary an exact value for the damper which provides maximum energy dissipation is investigated. Finally, numerical simulations are presented to establish the feasibility of the method.  相似文献   

13.
We consider radiation of moving oscillating electric and magnetic dipoles, whose moments are oriented along their velocity. We have derived general expressions for field components and radiation power, which are valid for isotropic homogeneous nonabsorbing media. Special cases of a nondispersive medium and a cold plasma are considered. In these cases, the dependences of energy spectral distributions and radiation powers are analyzed as a function of the velocity of the sources and the parameters of media.  相似文献   

14.
Phenomena that accompany the transonic transition experienced by a load moving along a string on a deformed base are studied. A solution in the form convenient for a qualitative analysis of the wave processes is proposed. The cases of the acceleration and deceleration of the load are considered.  相似文献   

15.
In this paper, an active control scheme for an axially moving string system that suppresses both longitudinal and transverse vibrations and regulates the transport velocity of the string to track a desired moving velocity profile is investigated. The control scheme utilizes three inputs: one control force at the right boundary, which is exerted by a hydraulic actuator equipped with a damper, and two control torques applied at the left and right rollers. The equations of motion are derived by using Hamilton's principle. Two nonlinear partial differential equations govern the longitudinal and transverse motions, where the variation of the tension of the string due to the transverse and longitudinal vibrations is considered. Among four boundary conditions, two describe the rotational dynamics of the left and right rollers; one determines the dynamics of the hydraulic actuator at the right boundary, and the last one denotes that the left boundary is fixed. The Lyapunov method is employed to generate control laws. Asymptotic stability of the transverse and longitudinal dynamics and the velocity tracking error is achieved. The effectiveness of the proposed control scheme is illustrated via numerical simulations.  相似文献   

16.
Kuklin  A. V.  Kuklin  V. A. 《Technical Physics》2019,64(1):111-115
Technical Physics - The electromagnetic field of a harmonic oscillator moving at a constant velocity has been analyzed. The expression for calculating the Doppler frequency shift at relativistic...  相似文献   

17.
In this paper the dynamic response of a double-string system traversed by a constant or a harmonically oscillating moving force is considered. The force is moving with a constant velocity on the top string. The strings are identical, parallel, one upon the other and continuously coupled by a linear Winkler elastic element. The classical solution of the response of a double-string system subjected to a force moving with a constant velocity has a form of an infinite series. The main goal of this paper is to show that in the considered case a part of the solution can be presented in a closed, analytical form instead of an infinite series. The presented method of finding the solution in a closed, analytical form is based on the observation that the solution of the system of partial differential equations in the form of an infinite series is also a solution of an appropriate system of ordinary differential equations.  相似文献   

18.
The stable generation of pairs of antiferromagnetic vortices at a domain wall moving at a velocity of 12 km/s is investigated at the instant it passes through a defect in a thin plate of yttrium orthoferrite. The velocities of a vortex and an antivortex moving in opposite directions along the domain wall and being accompanied by solitary flexural waves are ±16 km/s. The total velocity of antiferromagnetic vortices is close to the maximum velocity of the domain wall, 20 km/s. Such a high velocity can only be due to the action of a quite large gyroscopic force. An external dc magnetic field (±400 Oe) applied along the b axis of the orthoferrite affects this velocity insignificantly. The effective magnetic field that violates the Lorentz invariance of the dynamics considerably exceeds this value.  相似文献   

19.
In this paper, a robust adaptive boundary control for an axially moving string that shows nonlinear behavior resulting from spatially varying tension is investigated. A hydraulic actuator equipped with a damper is used as the control actuator at the right boundary of the string. The Lyapunov redesign method is employed to derive a robust control algorithm employing adaptation laws that estimate three unknown system parameters (mass per unit length of string, lumped mass of hydraulic actuator, and damping coefficient of damper) and an unknown boundary disturbance. The uniform asymptotic stability (when the three parameters are all unknown), the exponential stability (when they are known), and the uniform ultimate boundedness (with a bounded boundary disturbance) of the closed loop system are investigated. The convergence of the parameter estimates to the true values is shown. Numerical simulations are performed to demonstrate the effectiveness of the proposed robust adaptive boundary control.  相似文献   

20.
A review of experimental works that were performed in this country devoted to investigation of the independence of the speed of light on the velocity of a radiation source is given. Factors that are capable of giving rise to inaccuracies and errors in these measurements, which affected the results of early experiments, are analyzed. It has been shown that the most convincing results in this field were obtained in measurements of the velocity of synchrotron radiation when the radiation source is a bunch of electrons moving along a circular trajectory at a velocity close to the speed of light. In particular, recent experiments that were performed by E.B. Aleksandrov et al. with an accuracy no worse than 0.5% show that the speed of light does not depend on the velocity of the radiation source. It has been shown that almost all the first experiments on the verification of ballistic theories of light were performed in Russia and the Soviet Union.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号