首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
In this paper, an active control scheme for an axially moving string system that suppresses both longitudinal and transverse vibrations and regulates the transport velocity of the string to track a desired moving velocity profile is investigated. The control scheme utilizes three inputs: one control force at the right boundary, which is exerted by a hydraulic actuator equipped with a damper, and two control torques applied at the left and right rollers. The equations of motion are derived by using Hamilton's principle. Two nonlinear partial differential equations govern the longitudinal and transverse motions, where the variation of the tension of the string due to the transverse and longitudinal vibrations is considered. Among four boundary conditions, two describe the rotational dynamics of the left and right rollers; one determines the dynamics of the hydraulic actuator at the right boundary, and the last one denotes that the left boundary is fixed. The Lyapunov method is employed to generate control laws. Asymptotic stability of the transverse and longitudinal dynamics and the velocity tracking error is achieved. The effectiveness of the proposed control scheme is illustrated via numerical simulations.  相似文献   

2.
In this paper transverse vibration of an axially moving viscoelastic string with a viscous damper at one end is investigated analytically. The string is assumed to be travelling with constant velocity and the length of string is constant or time varying. The linear and nonlinear mathematical models are derived using the Lagrangian function and implemented using a finite element method. The method considers a time varying state space function applied to the linear model, the Newmark-Beta method is used to solve the response for the nonlinear problem numerically. The case of energy dissipated by a viscoelastic damper at one end of the string for different axial string velocities is considered. When a disturbance arrives at the boundary an exact value for the damper which provides maximum energy dissipation is investigated. Finally, numerical simulations are presented to establish the feasibility of the method.  相似文献   

3.
The vibration of a structure can be controlled using either a passive tuned mass damper or using an active vibration control system. In this paper, the design of a multifunctional system is discussed, which uses an inertial actuator as both a tuned mass damper and as an element in a velocity feedback control loop. The natural frequency of the actuator would normally need to be well below that of the structure under control to give a stable velocity feedback controller, whereas it needs to be close to the natural frequency of a dominant structural resonance to act as an effective tuned mass damper. A compensator is used in the feedback controller here to allow stable feedback operation even when the actuator natural frequency is close to that of a structural mode. A practical example of such a compensator is described for a small inertial actuator, which is then used to actively control the vibrations both on a panel and on a beam. The influence of the actuator as a passive tuned mass damper can be clearly seen before the feedback loop is closed, and broadband damping is then additionally achieved by closing the velocity feedback loop.  相似文献   

4.
This paper proposes cooperative adaptive control schemes for a train platoon to improve efficient utility and guarantee string stability. The control schemes are developed based on a bidirectional strategy, i.e., the information of proximal(preceding and following) trains is used in the controller design. Based on available proximal information(prox-info) of location, speed, and acceleration, a direct adaptive control is designed to maintain the tracking interval at the minimum safe distance. Based on available prox-info of location, an observer-based adaptive control is designed to achieve the same target, which alleviates the requirements of equipped sensors to measure prox-info of speed and acceleration. The developed schemes are capable of on-line estimating of the unknown system parameters and stabilizing the closed-loop system, the string stability of train platoon is guaranteed on the basis of Lyapunov stability theorem. Numerical simulation results are presented to verify the effectiveness of the proposed control laws.  相似文献   

5.
祝大伟  涂俐兰 《物理学报》2013,62(5):50508-050508
本论文研究了具有随机扰动和未知参数的Lorenz混沌系统, 其中随机扰动是一维标准Wiener随机过程. 基于随机李雅普洛夫稳定性理论、Itô (伊藤)公式以及自适应控制方法, 本文分别通过设置三个和两个控制器,从理论上提出了两个均方渐近自适应同步标准, 这些标准简单易行,不仅能使得随机扰动下的驱动系统和响应系统达到均方渐近同步, 而且能同时识别出系统中的未知参数. 最后的Matlab数值模拟验证了提出的理论结果的正确性和有效性. 关键词: 随机扰动Lorenz混沌系统 自适应同步 随机李雅普洛夫稳定性理论 参数识别  相似文献   

6.
崔双喜  王维庆 《应用声学》2015,23(7):2385-2388
针对具有很强非线性的风力机桨叶系统,利用动量矩定理,建立桨叶动力学数学模型,采用自适应反演控制,设计独立变桨鲁棒自适应桨距角跟踪控制器。该控制方法采用在实际控制量中,引入自适应鲁棒项,克服和消除不确定性对桨叶系统的影响。利用Matlab/Simulink软件,搭建风力机仿真平台,仿真结果验证了所提出控制方法的可行性和有效性。在桨叶系统参数不确定、受到未知不平衡载荷的情况下,经过自适应过程,设计的控制器较好地实现了风力机桨叶桨距角独立、快速跟踪各自期望的桨距角。  相似文献   

7.
The use of mechanical dampers for the control of the self-excited galloping of transmission lines is considered. Two particular dampers, an in-span damper and a resilient mounting, are studied, two mass representations being used. For both dampers it is possible to produce an optimum damper either by maximizing the negative damping excitation that the damped system can withstand, or by choosing the smaller logarithmic decrement of oscillation of the system to be as large as possible in the absence of excitation. These two procedures do not produce the same damper parameters. Simple analytical expressions are produced for the optimum parameters, and these are shown to agree well with numerically optimized parameters. For the in-span damper, either method of optimization gives a damper for a much wider range of ratios of the damper to conductor masses than is predicted by earlier work. For the resilient mounting the optimization based on damping gives very similar behaviour to that of the in-span damper. When aerodynamic excitation is considered for the resilient mounting, a clear optimum exists only for a small range of mass ratios. Results from a representation of the conductor by a stretched string are used to define the range of mass ratios over which the two-mass damper idealizations may be used to define damper properties.  相似文献   

8.
FORCE FEEDBACK VERSUS ACCELERATION FEEDBACK IN ACTIVE VIBRATION ISOLATION   总被引:1,自引:0,他引:1  
This paper compares the force feedback and acceleration feedback implementation of the sky-hook damper when it is used to isolate a flexible structure from a disturbance source. It is shown that the use of a force sensor produces always alternating poles and zeros in the open-loop transfer function between the force actuator and the force sensor, which guarantees the stability of the closed loop. On the contrary, the acceleration feedback produces alternating poles and zeros only when the flexible structure is stiff compared to the isolation system; this property is lost when the flexible modes of the sensitive payload interfere with the isolation system.  相似文献   

9.
不同结构混沌系统的自适应同步和反同步   总被引:6,自引:0,他引:6       下载免费PDF全文
蔡娜  井元伟  张嗣瀛 《物理学报》2009,58(2):802-813
针对不同结构混沌系统的同步与反同步问题进行了研究.在系统参数已知时,采用主动控制法实现混沌系统的同步与反同步,并将主动控制器的设计方法进行了推广.在参数未知时,基于Lyapunov稳定性理论和自适应控制方法,给出了自适应控制器和参数自适应律,实现了参数均未知且结构不同的驱动系统和响应系统的同步与反同步.在控制器的设计过程中,将驱动系统和响应系统进行互换,讨论了互换前后的控制器和自适应律之间的关系.数值仿真结果说明了所提出设计方法的有效性. 关键词: 混沌同步 反同步 主动控制法 自适应控制法  相似文献   

10.
In this paper, a novel scheme to reduce the acceleration of the sprung mass, used in combination with sliding mode control, is proposed. The proposed scheme estimates the effects of the uncertain, nonlinear spring and damper, load variation and the unknown road disturbance. The controller needs the states of sprung mass only, obviating the need to measure the states of the unsprung mass. The ultimate boundedness of the overall suspension system is proved. The efficacy of the method is verified through simulations for three different types of road profiles and load variation and the scheme is validated on an experimental setup. The results are compared with passive suspension system.  相似文献   

11.
We investigate the problem of function projective synchronization (FPS) in drive-response dynamical networks with non-identical nodes. An adaptive controller is proposed for the FPS of complex dynamical networks with uncertain parameters and disturbance. Not only are the unknown parameters of the networks estimated by the adaptive laws obtained from the Lyapunov stability theory and Taylor expansions, but the unknown bounded disturbances are also simultaneously conquered by the proposed control. Finally, a numerical simulation is provided to illustrate the feasibility and effectiveness of the obtained result.  相似文献   

12.
This study is dedicated to design effective control schemes to suppress transverse vibration of an axially moving string system by adjusting the axial tension of the string. To this end, a continuous model in the form of partial differential equations is first established to describe the system dynamics. Using an energy-like system functional as a Lyapunov function, a sliding-mode controller (SMC) is designed to be applied when the level of vibration is not small. Due to non-analyticity of the SMC control effort generated as vibration level becoming small, two intelligent control schemes are proposed to complete the task — fuzzy sliding-mode control (FSMC) and fuzzy neural network control (FNNC). Both control approaches are based on a common structure of fuzzy control, taking switching function and its derivative as inputs and tension variation as output to reduce the transverse vibration of the string. In the framework of FSMC, genetic algorithm (GA) is utilized to search for the optimal scalings for the inputs; in addition, the technique of regionwise linear fuzzy logic control (RLFLC) is employed to simplify the computation procedure of the fuzzy reasoning. On the other hand, FNNC is proposed for conducting on-line tuning of control parameters to overcome model uncertainty. Numerical simulations are conducted to verify the effectiveness of controllers. Satisfactory stability and vibration suppression are attained for all controllers with the findings that the FSMC assisted by GA holds the advantage of fast convergence with a precise model while the FNNC is robust to model uncertainty and environmental disturbance although a relatively slower convergence could be present.  相似文献   

13.
基于磁悬浮作动器的自适应有源振动控制研究   总被引:2,自引:0,他引:2  
针对周期扰动提出一种基于磁悬浮作动器的非线性前馈自适应有源振动控制算法。算法中将磁悬浮作动器视为具有时变非线性的单输入输出系统,并使用径向基函数神经网络进行控制,分别采用聚类算法和随机梯度算法对其隐层中心点和输出层权值进行自适应调整。该算法摆脱了传统磁悬浮控制对模型的依赖,在正常工作条件下不需对作动器建模。仿真和实验结果表明:在单自由度主动隔振系统中,非线性自适应算法可以显著降低周期振动的能量,同时能对磁悬浮作动器的时变非线性进行有效的补偿。   相似文献   

14.
基于自适应模糊控制的分数阶混沌系统同步   总被引:1,自引:0,他引:1       下载免费PDF全文
陈晔  李生刚  刘恒 《物理学报》2016,65(17):170501-170501
本文主要研究了带有未知外界扰动的分数阶混沌系统的同步问题.基于分数阶Lyapunov稳定性理论,构造了分数阶的参数自适应规则以及模糊自适应同步控制器.在稳定性分析中主要使用了平方Lyapunov函数.该控制方法可以实现两分数阶混沌系统的同步,使得同步误差渐近趋于0.最后,数值仿真结果验证了本文方法的有效性.  相似文献   

15.
An alternate approach to exciting a one-dimensional structure with discontinuities using a piezoelectric actuator is presented and examined. Instead of being bonded to the uniform side of a beam, the piezoelectric actuator is attached such that it spans two adjacent rib discontinuities. In this configuration, the actuator generates an eccentric actuation force on the structure and induces both axial and transverse motions. The goal of this work is to first model the axial and transverse response caused by the piezoelectric actuator. Then, the change in that response is examined for the case where an external disturbance force is present. The system is modeled by coupling the piezoelectric strain and structural dynamic response. The characteristics of the voltage-generated piezoelectric forces are discussed through numerical examples. The structural response found using the dynamic force–voltage model for the actuator is then compared to the response when the actuator model is approximated by its static or zero-frequency value. Furthermore, the ability of the actuator to potentially provide better control authority by using this alternate configuration is examined. The numerical study shows that when the actuator spans two discontinuities, there is potential for greater control authority than when that same actuator is placed on the uniform side of the structure.  相似文献   

16.
This paper presents a robust saturation control approach for active vibration attenuation of building structures involving parameter uncertainties and input time delay. The parameter uncertainties are described in both polytopic and norm-bounded forms and represent the variations of floor masses, stiffnesses and damping coefficients. The input time delay can be time-varying within a known bound. In terms of the feasibility of certain delay-dependent linear matrix inequalities (LMIs), a state feedback controller can be designed to guarantee the robust stability and performance of the closed-loop system in the presence of parameter uncertainties, actuator saturation, and input time delay. The effectiveness of the proposed approach is investigated by numerical simulations on the vibration control of a three-storey building structure subject to seismic excitation. It is validated that the designed robust saturation controller can effectively suppress the structural vibration and keep the system stability when there are parameter uncertainties and input time delay.  相似文献   

17.
蔡国梁  黄娟娟 《物理学报》2006,55(8):3997-4004
用两种不同的方法——主动控制同步法和自适应控制同步法实现超混沌Chen系统和超混沌Roessler系统的异结构同步,各自设计了不同的控制器,使得响应系统与驱动系统同步.当参数已知时,采用主动控制法,方法简单有效且不需要构造Lyapunov函数,实现同步的时间短;当系统参数未知或结构不确定时,基于Lyapunov稳定性理论,给出自适应同步控制器的系统设计过程和参数自适应律,使得系统达到同步同时识别未知参数,数值模拟验证了两种方法的有效性。  相似文献   

18.
高士根  董海荣  孙绪彬  宁滨 《中国物理 B》2015,24(1):10501-010501
This paper presents neural adaptive control methods for a class of chaotic nonlinear systems in the presence of constrained input and unknown dynamics.To attenuate the influence of constrained input caused by actuator saturation,an effective auxiliary system is constructed to prevent the stability of closed loop system from being destroyed.Radial basis function neural networks(RBF-NNs)are used in the online learning of the unknown dynamics,which do not require an off-line training phase.Both state and output feedback control laws are developed.In the output feedback case,high-order sliding mode(HOSM)observer is utilized to estimate the unmeasurable system states.Simulation results are presented to verify the effectiveness of proposed schemes.  相似文献   

19.
A vibration control scheme integrating a passive mass–spring resonator and a linear actuator is developed. A control algorithm is devised to convert the actuator into an additional set of virtual mass–spring structure of programmable characteristic frequency. The relative motion between the primary body and the reaction mass is measured, as well as the acceleration of the reaction mass. This hybrid dynamic vibration absorber is capable of neutralizing a harmonic disturbance regardless of the detailed dynamics of the primary structure and other passive elements. Stability analysis leads to a simple, explicit stability criterion. Distribution of the counter-disturbance force between the active and passive devices is analyzed, and the transient performance is also investigated. Real-time experiments as well as numerical simulations are conducted to confirm the effectiveness of the proposed scheme.  相似文献   

20.
郑亚周  程荣军  卢兆明  葛红霞 《中国物理 B》2016,25(6):60506-060506
To further investigate car-following behaviors in the cooperative adaptive cruise control(CACC) strategy,a comprehensive control system which can handle three traffic conditions to guarantee driving efficiency and safety is designed by using three CACC models.In this control system,some vital comprehensive information,such as multiple preceding cars' speed differences and headway,variable safety distance(VSD) and time-delay effect on the traffic current and the jamming transition have been investigated via analytical or numerical methods.Local and string stability criterion for the velocity control(VC) model and gap control(GC) model are derived via linear stability theory.Numerical simulations are conducted to study the performance of the simulated traffic flow.The simulation results show that the VC model and GC model can improve driving efficiency and suppress traffic congestion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号