首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
张冬冬  谭建国  李浩  侯聚微 《物理学报》2017,66(10):104702-104702
在超声速吸气式混合层风洞中,采用基于纳米粒子的平面激光散射(NPLS)技术对平板混合层和三角波瓣混合器诱导的混合层流场精细结构进行了对比实验研究.上下两层来流的实测马赫数分别为1.98和2.84,对流马赫数为0.2.NPLS图像清晰地展示了Kelvin-Helmholtz涡、流向涡、波系结构以及大尺度涡结构的配对合并过程.通过对比分析时间相关的NPLS流场图像,发现了大尺度拟序结构随时间发展演化的非定常特性.基于流动显示结果,采用分形维数和间歇因子指标对流场结构和混合特性进行了定量分析.实验研究表明,三角波瓣混合器诱导的流向涡结构显著提高了上下两层来流的掺混效率,其流动远场的分形维数突破了平板混合层中完全湍流区的分形维数值,达到了1.88,流场结构表现出明显的破碎性,有利于流动在标量层面的扩散和掺混.流动间歇性分析表明,流向涡与展向涡的相互剪切作用主导着混合层的掺混特性,同时由于流向涡的卷吸作用,三角波瓣混合器诱导的混合层混合区域更大,更多的流质被卷入混合区完成混合.  相似文献   

2.
脉冲激励下超音速混合层涡结构的演化机理   总被引:1,自引:0,他引:1       下载免费PDF全文
郭广明  刘洪  张斌  张庆兵 《物理学报》2017,66(8):84701-084701
采用大涡模拟方法对脉冲激励作用下的超音速混合层流场进行数值模拟,所得结果清晰展示了流场中涡结构的独特生长机理.基于涡核位置提取方法,对超音速混合层流场中涡结构的空间尺寸和瞬时对流速度等动态特性进行了定量计算.通过分析流场中涡结构的动态特性在不同频率脉冲激励下的变化,揭示出受脉冲激励超音速混合层流场中涡结构的演化机理:涡结构的生长不再是依靠相邻涡-涡结构之间的配对与融合,而是通过涡核外围的一串小涡旋结构被依次吸进涡核来实现,且受激励流场中各个涡结构的空间尺寸变化较小;流场中的涡结构数量与脉冲频率成正比例关系,而涡结构的空间尺寸与脉冲频率成反比例关系;涡结构的平均对流速度随脉冲频率的增大而减小.针对受脉冲激励超音速混合层,给出了能够表征涡结构特性与脉冲激励参数之间关系的方程式,即受激励流场中涡结构的平均对流速度与脉冲周期的乘积近似等于流场中涡结构的空间尺寸(涡结构平均直径).  相似文献   

3.
管新蕾  王维  姜楠 《物理学报》2015,64(9):94703-094703
基于相同雷诺数下清水和高分子聚合物溶液壁湍流的高时间分辨率粒子图像测速技术(time-resolved particle image velocimetry, TRPIV)的对比实验, 从高聚物溶液对湍流边界层动量能量输运影响的角度分析其减阻的机理. 对比两者的雷诺应力发现高聚物的存在抑制了湍流输运过程. 这一影响与高聚物对壁湍流中占主导地位的涡旋运动和低速条带等相干结构的作用密切相关. 运用条件相位平均、相关函数和线性随机估计(linear stochastic estimation, LSE)等方法, 分析提取了高聚物溶液流场中的发卡涡和发卡涡包等典型相干结构的空间拓扑形态. 相比于清水, 高聚物溶液中相干结构的流向尺度增大, 涡旋运动的发展及低速流体喷射的强度受到削弱, 表明了添加的高聚物阻碍了湍流原有的能量传递和自维持的机理. 正是通过影响相干结构, 高聚物抑制了湍流边界层中近壁区与外区之间的动量和能量输运, 使得湍流的无序性降低, 从而减小了湍流流动的阻力.  相似文献   

4.
The aim of this study is to investigate numerically the effects of four vortices on the dynamic, scalar, and turbulent fields of the hydrogen jet. These vortices, which appear in the vicinities of the nozzle, are created by the vortex generators (VGs), and they are assembled with periodicity or symmetry in order, respectively, to give four vortices of the same or opposite direction. A second-order Reynolds stress model is used to investigate asymmetric turbulent jet. The results indicate that the presence of the vortex near the emission jet section noticeably enhances mixing to ensure a good combustion.  相似文献   

5.
The dynamics of dark solitons (vortices) with the same topological charge (vorticity) in the two-dimensional nonlinear Schr?dinger (NLS) equation in a defocusing medium is studied. The dynamics differ from those in incompressible media due to the possibility of energy and angular momentum radiation. The problem of the breakup of a multicharged dark soliton, which is a local decrease of the wave function intensity, into a number of chaotically moving vortices with single charge, is studied both analytically and numerically. After an initial period of intensive wave radiation, there emerges a nonuniform, steady turbulent self-organized motion of these vortices which is restricted in space by the size of the potential well of the initial multicharged dark soliton. Separate orbits of finite widths arise in this turbulent motion. That is, the statistical probability to observe a vortex in a given point has maxima near certain points (orbit positions). In spite of the fact that numerical calculations were performed in a finite region, the turbulent distributions of the vortices do not depend on the size of the container when its radius is larger than the size of the potential well of the primary multicharged dark soliton. The steady turbulent distribution of vortices on these orbits can be obtained as the extremal of the Lyapunov functional of the NLS equation, and obeys some simple rules. The first is the absence of Cherenkov resonance with linear (sound) waves. The second is the condition of a potential energy maximum in the region of vortex motion. These conditions give an approximately equidistant disposition of orbits of the same number of vortices on each orbit, which corresponds to a constant rotating velocity. The magnitude of this velocity is mainly determined by the sound velocity. An integral estimation of the self-consistent rotation of the vortex zone is given.  相似文献   

6.
朱杨柱  易仕和  何霖  田立丰  周勇为 《中国物理 B》2013,22(1):14702-014702
In a Mach 3.8 wind tunnel, both instantaneous and time-averaged flow structures of different scales around a blunt double-cone with or without supersonic film cooling were visualized via nano-tracer planar laser scattering (NPLS), which has a high spatiotemporal resolution. Three experimental cases with different injection mass flux rates were carried out. Many typical flow structures were clearly shown, such as shock waves, expansion fans, shear layers, mixing layers, and turbulent boundary layers. The analysis of two NPLS images with an interval of 5 μs revealed the temporal evolution characteristics of flow structures. With matched pressures, the laminar length of the mixing layer was longer than that in the case with a larger mass flux rate, but the full covered region was shorter. Structures like K-H (Kelvin-Helmholtz) vortices were clearly seen in both flows. Without injection, the flow was similar to the supersonic flow over a backward-facing step, and the structures were relatively simpler, and there was a longer laminar region. Large scale structures such as hairpin vortices were visualized. In addition, the results were compared in part with the schlieren images captured by others under similar conditions.  相似文献   

7.
Far field noise data indicated that for practical upper surface blown flap configurations, the noise radiated below the flap is dominated by the noise generated in the vicinity of the trailing edge. The sound field caused by turbulent mixing in the trailing edge wake is investigated experimentally and theoretically. Hot wire measurements were made downstream of the trailing edge to determine the gross turbulent mixing characteristics of the flow. This information is used as input to a theoretical analysis of the sound field. Favorable agreement is found between predicted and measured far field noise directivity at various frequencies and noise power spectra in various directions.  相似文献   

8.
Active mixing control of a methane/air isothermal coaxial jet was achieved using micro magnetic flap actuators arranged on the inner surface of the outer annular nozzle. The spatio-temporal evolution of vortical structures and the scalar mixing were studied through the particle image velocimetry and planar laser-induced fluorescence methods. In contrast to studies on jet control using acoustic forcing, the mechanical movement of the flap directly generated large-scale intense vortices. The mixing was enhanced significantly by the vortices formed in the inner shear layer, although the control input was given to the outer shear layer. It was found that the primary vortex rings dominated the near-field mixing, while streamwise vortices were responsible for the downstream mixing. It was also demonstrated that the radial range of the inner fuel transportation could be manipulated flexibly by adjusting the shedding interval of the vortices. Especially, the mixing was enhanced most significantly when the primary vortices were most densely populated near the nozzle exit at the control Strouhal number of unity.  相似文献   

9.
The operation of an acoustic transducer in a temperature-stratified medium is investigated. The formation of a response of piezoceramic transducers of pressure fluctuations under the action of temperature fluctuations in a working medium on the sensor element is considered. The attenuation of the temperature signal of a pressure transducer in a turbulent boundary layer is calculated numerically. The effect of distortions of the spectral levels of pressure fluctuations detected by a sound transducer in the field of temperature inhomogeneities is investigated for the example of measurements of turbulent pressure fluctuations in a boundary layer during vertical ascent of the device to the surface from a specified depth in a deep sea.  相似文献   

10.
In an idealized way, some turbulent flows can be pictured by assemblies of many vortices characterized by a set of particle distribution functions. Ultrasound provides a useful, nonintrusive, tool to study the spatial structure of vorticity in flows. This is analogous to the use of elastic neutron scattering to determine liquid structure. We express the dispersion relation, as well as the scattering cross section, of sound waves propagating in a "liquid" of identical vortices as a function of vortex pair correlation functions. In two dimensions, formal analogies with ionic liquids are pointed out.  相似文献   

11.
The possibility of acoustic control of instability waves formed in the mixing layer of a jet is experimentally investigated. The feasibility of suppressing a hydrodynamic instability wave in a subsonic turbulent jet by an external acoustic action is demonstrated. This result can be used in designing active control systems for jet noise suppression.  相似文献   

12.
采用准二维共振三波作为湍流边界层近壁区相干结构初值,用直接数值模拟方法计算了流动从二维结构发展到三维结构并且伴随流向涡生成的整个过程,分析结果显示流向涡对湍流动能和质量传输有着重要作用,是湍流边界层相干结构的重要特征和运动形式.  相似文献   

13.
李俊涛  孙宇涛  胡晓棉  任玉新 《物理学报》2017,66(23):235201-235201
基于多组分混合物质量分数模型,采用色散最小耗散可控的高分辨率有限体积方法,数值模拟了弱激波冲击V形空气/SF_6界面后,界面不稳定性生成的旋涡与固体壁面作用问题.激波冲击V形界面之后,因斜压效应诱导涡量沉积在界面附近,形成沿界面规则排列的多个涡对结构.旋涡的诱导作用使界面不断变形和卷起,同时旋涡之间不断发生相互并对,诱导更多更小尺度的旋涡产生.旋涡诱导作用的叠加效应,使界面尖端处的初始涡对向上下壁面发展.随后,涡结构开始与壁面发生复杂的相互作用.旋涡与壁面作用后沿壁面加速,使得物质界面沿壁面伸展,随后,旋涡从壁面回弹,并诱导二次旋涡产生.旋涡与壁面相互作用的过程,能够明显加剧物质混合.本文从物质混合的角度研究了该过程的机理,分析了旋涡与壁面作用对物质混合的影响.  相似文献   

14.
在零压梯度平板湍流边界层流动中安装垂直流向高度为h的扰流板,诱导流场产生横向涡,研究横向涡影响下湍流/非湍流界面特性沿流向的发展。结果表明,在本实验条件下,整个流动经历了从湍流边界层到流动分离和再附,再向湍流边界层恢复的过程。在扰流板下游约18h距离后,扰流板尾迹的影响逐渐衰退,壁面剪切对湍流强度的贡献开始逐渐恢复,在扰流板下游约55h距离后,湍流边界层再次充分发展。与此同时,由于扰流板后流场流动结构拟序性的增强,湍流/非湍流界面的分形维度受扰流板影响而减小,表明脱落涡有使界面多尺度特性、三维性减弱的趋势。此外,界面高度的概率密度分布受扰流板影响呈现显著的右偏,主要与扰流板增强喷射运动强度,使得界面更容易抬升相关。流动结构及界面特性受扰流板影响后的流向演化有同步变化的模式,扰流板对界面特性影响主要集中于(-5~18)h的流向范围。   相似文献   

15.
The results of theoretical and experimental investigation of an asymmetrical hypersonic flow around a V-shaped wing with the opening angle larger than π on the modes with attached shockwaves on forward edges, when the stall flow is implemented on the leeward wing cantilever behind the kink point of the cross contour. In this case, a vortex of nonviscous nature is formed in which the velocities on the sphere exceeding the speed of sound and resulting in the occurrence of pressure shocks with an intensity sufficient for the separation of the turbulent boundary layer take place in the reverse flow according to the calculations within the framework of the ideal gas. It is experimentally established that a separation boundary layer can exist in the reverse flow, and its structure is subject to the laws inherent to the reverse flow in the separation region of the turbulent boundary layer arising in the supersonic conic flow under the action of a shockwave incident to the boundary layer.  相似文献   

16.
We study the motion and sound generated when a line vortex is convected in a uniform low-Mach flow parallel to a thin elastic sheet. The linearized sheet motion is analyzed under conditions where the unforced sheet (in the absence of the line vortex) is stationary. The vortex passage above the sheet excites a resonance mode of motion, where the sheet oscillates at its least stable eigenmode. The sources of sound in the acoustic problem include the sheet velocity and fluid vorticity. It is shown that the release of trailing-edge vortices, resulting from the satisfaction of the Kutta condition, has two opposite effects on sound radiation: while trailing-edge vortices act to reduce the pressure fluctuations occurring owing to the direct interaction of the line vortex with the unperturbed sheet, they extend and amplify the acoustic signal produced by the motion of the sheet. The sheet motion radiates higher sound levels as the system approaches its critical conditions for instability, where the effect of resonance becomes more pronounced. It is argued that the present theory describes the essential mechanism by which sound is generated as a turbulent eddy is convected in a mean flow past a thin elastic airfoil.  相似文献   

17.
As the maximum speed of high speed trains increases, the effect of aeroacoustic noise on the sound level on the ground becomes increasingly important. In this paper, the distribution of dipole sound sources at the bogie section of high speed trains is predicted numerically. The three-dimensional unsteady flow around a train is solved by the large eddy simulation technique. The time history of vortices shows that unstable shear layer separation at the leading edge of the bogie section sheds vortices periodically. These vortices travel downstream while growing to finally impinge upon the trailing edge of the section. The wavelength of sound produced by these vortices is large compared to the representative length of the bogie section, so that the source region can be regarded as acoustically compact. Thus a compact Green's function adapted to the shape can be used to determine the sound. By coupling the instantaneous flow properties with the compact Green's function, the distribution of dipole sources is obtained. The results reveal a strong dipole source at the trailing edge of the bogie section where the shape changes greatly and the variation of flow with time is also great. On the other hand, the bottom of the bogie section where the shape does not change, or the leading edge and boundary layer where the variation of flow with time is small, cannot generate a strong dipole source.  相似文献   

18.
Two dimensional numerical simulation of the structure of gaseous detonation is investigated by utilizing the single step Arrhenius kinetic reaction mechanism in both high and low activation energy mixtures, characterized by their irregular and regular detonation structure, respectively. All the computations are performed on a small Beowulf cluster with six nodes. The dependency of the structure on the grid resolution is performed and it is found that, resolution of more than 300 cells per hrl is required to demonstrate the role of hydrodynamic instabilities, (KH and RM instabilities) in detonation propagation in irregular structures, while due to the absence of fine-scale structures, resolution of 50 cells per hrl, gives the physical structure of detonation with regular structures. Results show that the transverse waves in irregular structure are significantly stronger than the transverse wave in regular structure detonation, which can enhance the burning rate of the unburned pockets behind the shock front. Results for resolution of 600 cells per hrl illustrate that, in addition to the primary mode, the interaction of large vortices with the shock front provides secondary modes in the structure which leads to the irregularity of the structure in high activation energy mixture. In contrast with the results obtained for regular structure, which no unburned gas pockets and vortices observed behind the front, the results for irregular structure reveal that most portions of the gases, escape from shock compression and create large unburned gas pockets behind the both weak section of the Mach stem and the incident wave, which will burn eventually by the turbulent mixing due to the vortices associated with hydrodynamic instabilities. Therefore, the ignition mechanism in irregular structure is due to the both shock compression and by turbulent mixing associated with hydrodynamic instabilities, while the shock compression yields the ignition mechanism in regular structure detonation.  相似文献   

19.
利用基于纳米示踪的平面激光散射(nano-tracer-based planar laser scattering,NPLS)技术研究了Ramp-VG阵列对超声速混合层流场的控制效果.对流Mach数Mac=0.17.通过比较无控和控制状态下的混合层NPLS图像,发现控制状态下混合层流动速度提高了5%~15%,K-H不稳...  相似文献   

20.
We simulate the coalescence process of MHD-scale Kelvin-Helmholtz vortices with the electron inertial effects taken into account. Reconnection of highly stretched magnetic field lines within a rolled-up vortex destroys the vortex itself and the coalescence process, which is well known in ordinary fluid dynamics, is seen to be inhibited. When the magnetic field is initially antiparallel across the shear layer, on the other hand, multiple vortices are seen to coalesce continuously because another type of magnetic reconnection prevents the vortex decay. This type of reconnection at the hyperbolic point also changes the field line connectivity and thus leads to large-scale plasma mixing across the shear layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号