首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Speech-reception thresholds (SRT) were measured for 17 normal-hearing and 17 hearing-impaired listeners in conditions simulating free-field situations with between one and six interfering talkers. The stimuli, speech and noise with identical long-term average spectra, were recorded with a KEMAR manikin in an anechoic room and presented to the subjects through headphones. The noise was modulated using the envelope fluctuations of the speech. Several conditions were simulated with the speaker always in front of the listener and the maskers either also in front, or positioned in a symmetrical or asymmetrical configuration around the listener. Results show that the hearing impaired have significantly poorer performance than the normal hearing in all conditions. The mean SRT differences between the groups range from 4.2-10 dB. It appears that the modulations in the masker act as an important cue for the normal-hearing listeners, who experience up to 5-dB release from masking, while being hardly beneficial for the hearing impaired listeners. The gain occurring when maskers are moved from the frontal position to positions around the listener varies from 1.5 to 8 dB for the normal hearing, and from 1 to 6.5 dB for the hearing impaired. It depends strongly on the number of maskers and their positions, but less on hearing impairment. The difference between the SRTs for binaural and best-ear listening (the "cocktail party effect") is approximately 3 dB in all conditions for both the normal-hearing and the hearing-impaired listeners.  相似文献   

2.
The Speech Reception Threshold for sentences in stationary noise and in several amplitude-modulated noises was measured for 8 normal-hearing listeners, 29 sensorineural hearing-impaired listeners, and 16 normal-hearing listeners with simulated hearing loss. This approach makes it possible to determine whether the reduced benefit from masker modulations, as often observed for hearing-impaired listeners, is due to a loss of signal audibility, or due to suprathreshold deficits, such as reduced spectral and temporal resolution, which were measured in four separate psychophysical tasks. Results show that the reduced masking release can only partly be accounted for by reduced audibility, and that, when considering suprathreshold deficits, the normal effects associated with a raised presentation level should be taken into account. In this perspective, reduced spectral resolution does not appear to qualify as an actual suprathreshold deficit, while reduced temporal resolution does. Temporal resolution and age are shown to be the main factors governing masking release for speech in modulated noise, accounting for more than half of the intersubject variance. Their influence appears to be related to the processing of mainly the higher stimulus frequencies. Results based on calculations of the Speech Intelligibility Index in modulated noise confirm these conclusions.  相似文献   

3.
In an evaluation of frequency-dependent automatic gain-control systems in hearing aids, the effect of varying the amplitude-frequency response on the speech-reception threshold (SRT) for sentences in noise is studied for 20 hearing-impaired listeners. The noise has a spectrum identical to the long-term average spectrum of the sentences. Speech and noise are shaped by the same amplitude-frequency response; their spectra are varied relative to the bisector of the individual's dynamic range. In four experimental conditions, the effect of a steady-state amplitude-frequency response is studied. Steepening the negative spectral slope of speech and noise appears to cause an increase of masked SRT, possibly due to increased effect of upward spread of masking. The effect of a single transition of the amplitude-frequency response between 10 and -10 dB/oct halfway through the sentence seems to be related to the effect for the fixed -10-dB/oct condition. Two transition times are tested. For a transition time of 0.25 s, the SRT is only a little higher than for 1 s. The results suggest that the amplitude-frequency response may be varied in time without having a detrimental effect on the masked SRT of sentences for hearing-impaired listeners as long as strongly negatively sloping spectra are avoided.  相似文献   

4.
Simultaneous-masked psychophysical tuning curves (PTCs) were obtained from normal-hearing and sensorineural hearing-impaired listeners. The 20-ms signal was presented at the onset or at the temporal center of the 400-ms masker. For the normal-hearing listeners, as shown previously [S. P. Bacon and B. C. J. Moore, J. Acoust. Soc. Am. 80, 1638-1645 (1986)], the PTCs were sharper on the high-frequency side for a signal in the temporal center of the masker. For the hearing-impaired listeners, however, the shape of the PTC was virtually independent of the temporal position of the signal. These data suggest that the mechanisms responsible for sharpening the PTC with time in normal-hearing listeners are ineffective in listeners with moderate-to-severe sensorineural hearing loss.  相似文献   

5.
Many competing noises in real environments are modulated or fluctuating in level. Listeners with normal hearing are able to take advantage of temporal gaps in fluctuating maskers. Listeners with sensorineural hearing loss show less benefit from modulated maskers. Cochlear implant users may be more adversely affected by modulated maskers because of their limited spectral resolution and by their reliance on envelope-based signal-processing strategies of implant processors. The current study evaluated cochlear implant users' ability to understand sentences in the presence of modulated speech-shaped noise. Normal-hearing listeners served as a comparison group. Listeners repeated IEEE sentences in quiet, steady noise, and modulated noise maskers. Maskers were presented at varying signal-to-noise ratios (SNRs) at six modulation rates varying from 1 to 32 Hz. Results suggested that normal-hearing listeners obtain significant release from masking from modulated maskers, especially at 8-Hz masker modulation frequency. In contrast, cochlear implant users experience very little release from masking from modulated maskers. The data suggest, in fact, that they may show negative effects of modulated maskers at syllabic modulation rates (2-4 Hz). Similar patterns of results were obtained from implant listeners using three different devices with different speech-processor strategies. The lack of release from masking occurs in implant listeners independent of their device characteristics, and may be attributable to the nature of implant processing strategies and/or the lack of spectral detail in processed stimuli.  相似文献   

6.
The present study assesses the ability of four listeners with high-frequency, bilateral symmetrical sensorineural hearing loss to localize and detect a broadband click train in the frontal-horizontal plane, in quiet and in the presence of a white noise. The speaker array and stimuli are identical to those described by Lorenzi et al. (in press). The results show that: (1) localization performance is only slightly poorer in hearing-impaired listeners than in normal-hearing listeners when noise is at 0 deg azimuth, (2) localization performance begins to decrease at higher signal-to-noise ratios for hearing-impaired listeners than for normal-hearing listeners when noise is at +/- 90 deg azimuth, and (3) the performance of hearing-impaired listeners is less consistent when noise is at +/- 90 deg azimuth than at 0 deg azimuth. The effects of a high-frequency hearing loss were also studied by measuring the ability of normal-hearing listeners to localize the low-pass filtered version of the clicks. The data reproduce the effects of noise on three out of the four hearing-impaired listeners when noise is at 0 deg azimuth. They reproduce the effects of noise on only two out of the four hearing-impaired listeners when noise is at +/- 90 deg azimuth. The additional effects of a low-frequency hearing loss were investigated by attenuating the low-pass filtered clicks and the noise by 20 dB. The results show that attenuation does not strongly affect localization accuracy for normal-hearing listeners. Measurements of the clicks' detectability indicate that the hearing-impaired listeners who show the poorest localization accuracy also show the poorest ability to detect the clicks. The inaudibility of high frequencies, "distortions," and reduced detectability of the signal are assumed to have caused the poorer-than-normal localization accuracy for hearing-impaired listeners.  相似文献   

7.
Psychophysical estimates of cochlear function suggest that normal-hearing listeners exhibit a compressive basilar-membrane (BM) response. Listeners with moderate to severe sensorineural hearing loss may exhibit a linearized BM response along with reduced gain, suggesting the loss of an active cochlear mechanism. This study investigated how the BM response changes with increasing hearing loss by comparing psychophysical measures of BM compression and gain for normal-hearing listeners with those for listeners who have mild to moderate sensorineural hearing loss. Data were collected from 16 normal-hearing listeners and 12 ears from 9 hearing-impaired listeners. The forward masker level required to mask a fixed low-level, 4000-Hz signal was measured as a function of the masker-signal interval using a masker frequency of either 2200 or 4000 Hz. These plots are known as temporal masking curves (TMCs). BM response functions derived from the TMCs showed a systematic reduction in gain with degree of hearing loss. Contrary to current thinking, however, no clear relationship was found between maximum compression and absolute threshold.  相似文献   

8.
Binaural speech intelligibility in noise for hearing-impaired listeners   总被引:2,自引:0,他引:2  
The effect of head-induced interaural time delay (ITD) and interaural level differences (ILD) on binaural speech intelligibility in noise was studied for listeners with symmetrical and asymmetrical sensorineural hearing losses. The material, recorded with a KEMAR manikin in an anechoic room, consisted of speech, presented from the front (0 degree), and noise, presented at azimuths of 0 degree, 30 degrees, and 90 degrees. Derived noise signals, containing either only ITD or only ILD, were generated using a computer. For both groups of subjects, speech-reception thresholds (SRT) for sentences in noise were determined as a function of: (1) noise azimuth, (2) binaural cue, and (3) an interaural difference in overall presentation level, simulating the effect of a monaural hearing acid. Comparison of the mean results with corresponding data obtained previously from normal-hearing listeners shows that the hearing impaired have a 2.5 dB higher SRT in noise when both speech and noise are presented from the front, and 2.6-5.1 dB less binaural gain when the noise azimuth is changed from 0 degree to 90 degrees. The gain due to ILD varies among the hearing-impaired listeners between 0 dB and normal values of 7 dB or more. It depends on the high-frequency hearing loss at the side presented with the most favorable signal-to-noise (S/N) ratio. The gain due to ITD is nearly normal for the symmetrically impaired (4.2 dB, compared with 4.7 dB for the normal hearing), but only 2.5 dB in the case of asymmetrical impairment. When ITD is introduced in noise already containing ILD, the resulting gain is 2-2.5 dB for all groups. The only marked effect of the interaural difference in overall presentation level is a reduction of the gain due to ILD when the level at the ear with the better S/N ratio is decreased. This implies that an optimal monaural hearing aid (with a moderate gain) will hardly interfere with unmasking through ITD, while it may increase the gain due to ILD by preventing or diminishing threshold effects.  相似文献   

9.
Listeners with sensorineural hearing loss are poorer than listeners with normal hearing at understanding one talker in the presence of another. This deficit is more pronounced when competing talkers are spatially separated, implying a reduced "spatial benefit" in hearing-impaired listeners. This study tested the hypothesis that this deficit is due to increased masking specifically during the simultaneous portions of competing speech signals. Monosyllabic words were compressed to a uniform duration and concatenated to create target and masker sentences with three levels of temporal overlap: 0% (non-overlapping in time), 50% (partially overlapping), or 100% (completely overlapping). Listeners with hearing loss performed particularly poorly in the 100% overlap condition, consistent with the idea that simultaneous speech sounds are most problematic for these listeners. However, spatial release from masking was reduced in all overlap conditions, suggesting that increased masking during periods of temporal overlap is only one factor limiting spatial unmasking in hearing-impaired listeners.  相似文献   

10.
This study investigated the effect of mild-to-moderate sensorineural hearing loss on the ability to identify speech in noise for vowel-consonant-vowel tokens that were either unprocessed, amplitude modulated synchronously across frequency, or amplitude modulated asynchronously across frequency. One goal of the study was to determine whether hearing-impaired listeners have a particular deficit in the ability to integrate asynchronous spectral information in the perception of speech. Speech tokens were presented at a high, fixed sound level and the level of a speech-shaped noise was changed adaptively to estimate the masked speech identification threshold. The performance of the hearing-impaired listeners was generally worse than that of the normal-hearing listeners, but the impaired listeners showed particularly poor performance in the synchronous modulation condition. This finding suggests that integration of asynchronous spectral information does not pose a particular difficulty for hearing-impaired listeners with mild/moderate hearing losses. Results are discussed in terms of common mechanisms that might account for poor speech identification performance of hearing-impaired listeners when either the masking noise or the speech is synchronously modulated.  相似文献   

11.
Three experiments were conducted to determine whether listeners with a sensorineural hearing loss exhibited greater than normal amounts of masking at frequencies above the frequency of the masker. Excess masking was defined as the difference (in dB) between the masked thresholds actually obtained from a hearing-impaired listener and the expected thresholds calculated for the same individual. The expected thresholds were the power sum of the listener's thresholds in quiet and the average masked thresholds obtained from a group of normal-hearing subjects at the test frequency. Hearing-impaired listeners, with thresholds in quiet ranging from approximately 35-70 dB SPL (at test frequencies between 500-3000 Hz), displayed approximately 12-15 dB of maximum excess masking. The maximum amount of excess masking occurred in the region where the threshold in quiet of the hearing-impaired listener and the average normal masked threshold were equal. These findings indicate that listeners with a sensorineural hearing loss display one form of reduced frequency selectivity (i.e., abnormal upward spread of masking) even when their thresholds in quiet are taken into account.  相似文献   

12.
Speech recognition performance was measured in normal-hearing and cochlear-implant listeners with maskers consisting of either steady-state speech-spectrum-shaped noise or a competing sentence. Target sentences from a male talker were presented in the presence of one of three competing talkers (same male, different male, or female) or speech-spectrum-shaped noise generated from this talker at several target-to-masker ratios. For the normal-hearing listeners, target-masker combinations were processed through a noise-excited vocoder designed to simulate a cochlear implant. With unprocessed stimuli, a normal-hearing control group maintained high levels of intelligibility down to target-to-masker ratios as low as 0 dB and showed a release from masking, producing better performance with single-talker maskers than with steady-state noise. In contrast, no masking release was observed in either implant or normal-hearing subjects listening through an implant simulation. The performance of the simulation and implant groups did not improve when the single-talker masker was a different talker compared to the same talker as the target speech, as was found in the normal-hearing control. These results are interpreted as evidence for a significant role of informational masking and modulation interference in cochlear implant speech recognition with fluctuating maskers. This informational masking may originate from increased target-masker similarity when spectral resolution is reduced.  相似文献   

13.
A functional simulation of hearing loss was evaluated in its ability to reproduce the temporal modulation transfer functions (TMTFs) for nine listeners with mild to profound sensorineural hearing loss. Each hearing loss was simulated in a group of three age-matched normal-hearing listeners through spectrally shaped masking noise or a combination of masking noise and multiband expansion. TMTFs were measured for both groups of listeners using a broadband noise carrier as a function of modulation rate in the range 2 to 1024 Hz. The TMTFs were fit with a lowpass filter function that provided estimates of overall modulation-depth sensitivity and modulation cutoff frequency. Although the simulations were capable of accurately reproducing the threshold elevations of the hearing-impaired listeners, they were not successful in reproducing the TMTFs. On average, the simulations resulted in lower sensitivity and higher cutoff frequency than were observed in the TMTFs of the hearing-impaired listeners. Discrepancies in performance between listeners with real and simulated hearing loss are possibly related to inaccuracies in the simulation of recruitment.  相似文献   

14.
Temporal processing ability in the hearing impaired was investigated in a 2IFC gap-detection paradigm. The stimuli were digitally constructed 50-Hz-wide bands of noise centered at 250, 500, and 1000 Hz. On each trial, two 400-ms noise samples were paired, shaped at onset and offset, filtered, and presented in the quiet with and without a temporal gap. A modified up-down procedure with trial-by-trial feedback was used to establish threshold of detection of the gap. Approximately 4 h of practice preceded data collection; final estimate of threshold was the average of six listening blocks. There were 10 listeners, 19-25 years old. Five had normal hearing; five had a moderate congenital sensorineural hearing loss with relatively flat audiometric configuration. Near threshold (5 dB SL), all listeners performed similarly. At 15 and 25 dB SL, the normal-hearing group performed better than the hearing-impaired group. At 78 dB SPL, equal to the average intensity of the 5-dB SL condition for the hearing impaired, the normal-hearing group continued to improve and demonstrated a frequency effect not seen in the other conditions. Substantial individual differences were found in both groups, though intralistener variability was as small as expected for these narrow-bandwidth signals.  相似文献   

15.
Speech reception thresholds (SRTs) for sentences were determined in stationary and modulated background noise for two age-matched groups of normal-hearing (N = 13) and hearing-impaired listeners (N = 21). Correlations were studied between the SRT in noise and measures of auditory and nonauditory performance, after which stepwise regression analyses were performed within both groups separately. Auditory measures included the pure-tone audiogram and tests of spectral and temporal acuity. Nonauditory factors were assessed by measuring the text reception threshold (TRT), a visual analogue of the SRT, in which partially masked sentences were adaptively presented. Results indicate that, for the normal-hearing group, the variance in speech reception is mainly associated with nonauditory factors, both in stationary and in modulated noise. For the hearing-impaired group, speech reception in stationary noise is mainly related to the audiogram, even when audibility effects are accounted for. In modulated noise, both auditory (temporal acuity) and nonauditory factors (TRT) contribute to explaining interindividual differences in speech reception. Age was not a significant factor in the results. It is concluded that, under some conditions, nonauditory factors are relevant for the perception of speech in noise. Further evaluation of nonauditory factors might enable adapting the expectations from auditory rehabilitation in clinical settings.  相似文献   

16.
Two experiments compared the effect of supplying visual speech information (e.g., lipreading cues) on the ability to hear one female talker's voice in the presence of steady-state noise or a masking complex consisting of two other female voices. In the first experiment intelligibility of sentences was measured in the presence of the two types of maskers with and without perceived spatial separation of target and masker. The second study tested detection of sentences in the same experimental conditions. Results showed that visual cues provided more benefit for both recognition and detection of speech when the masker consisted of other voices (versus steady-state noise). Moreover, visual cues provided greater benefit when the target speech and masker were spatially coincident versus when they appeared to arise from different spatial locations. The data obtained here are consistent with the hypothesis that lipreading cues help to segregate a target voice from competing voices, in addition to the established benefit of supplementing masked phonetic information.  相似文献   

17.
Speech-in-noise-measurements are important in clinical practice and have been the subject of research for a long time. The results of these measurements are often described in terms of the speech reception threshold (SRT) and SNR loss. Using the basic concepts that underlie several models of speech recognition in steady-state noise, the present study shows that these measures are ill-defined, most importantly because the slope of the speech recognition functions for hearing-impaired listeners always decreases with hearing loss. This slope can be determined from the slope of the normal-hearing speech recognition function when the SRT for the hearing-impaired listener is known. The SII-function (i.e., the speech intelligibility index (SII) against SNR) is important and provides insights into many potential pitfalls when interpreting SRT data. Standardized SNR loss, sSNR loss, is introduced as a universal measure of hearing loss for speech in steady-state noise. Experimental data demonstrates that, unlike the SRT or SNR loss, sSNR loss is invariant to the target point chosen, the scoring method or the type of speech material.  相似文献   

18.
The purpose of this study was to examine the contribution of information provided by vowels versus consonants to sentence intelligibility in young normal-hearing (YNH) and typical elderly hearing-impaired (EHI) listeners. Sentences were presented in three conditions, unaltered or with either the vowels or the consonants replaced with speech shaped noise. Sentences from male and female talkers in the TIMIT database were selected. Baseline performance was established at a 70 dB SPL level using YNH listeners. Subsequently EHI and YNH participants listened at 95 dB SPL. Participants listened to each sentence twice and were asked to repeat the entire sentence after each presentation. Words were scored correct if identified exactly. Average performance for unaltered sentences was greater than 94%. Overall, EHI listeners performed more poorly than YNH listeners. However, vowel-only sentences were always significantly more intelligible than consonant-only sentences, usually by a ratio of 2:1 across groups. In contrast to written English or words spoken in isolation, these results demonstrated that for spoken sentences, vowels carry more information about sentence intelligibility than consonants for both young normal-hearing and elderly hearing-impaired listeners.  相似文献   

19.
Overshoot was measured in both ears of four subjects with normal hearing and in five subjects with permanent, sensorineural hearing loss (two with a unilateral loss). The masker was a 400-ms broadband noise presented at a spectrum level of 20, 30, or 40 dB SPL. The signal was a 10-ms sinusoid presented 1 or 195 ms after the onset of the masker. Signal frequency was 1.0 or 4.0 kHz, which placed the signal in a region of normal (1.0 kHz) or impaired (4.0 kHz) absolute sensitivity for the impaired ears. For the normal-hearing subjects, the effects of signal frequency and masker level were similar to those published previously. In particular, overshoot was larger at 4.0 than at 1.0 kHz, and overshoot at 4.0 kHz tended to decrease with increasing masker level. At 4.0 kHz, overshoot values were significantly larger in the normal ears: Maximum values ranged from about 7-26 dB in the normal ears, but were always less than 5 dB in the impaired ears. The smaller overshoot values resulted from the fact that thresholds in the short-delay condition were considerably better in the hearing-impaired subjects than in the normal-hearing subjects. At 1.0 kHz, overshoot values for the two groups of subjects more or less overlapped. The results suggest that permanent, sensorineural hearing loss disrupts the mechanisms responsible for a large overshoot effect.  相似文献   

20.
A triadic comparisons task and an identification task were used to evaluate normally hearing listeners' and hearing-impaired listeners' perceptions of synthetic CV stimuli in the presence of competition. The competing signals included multitalker babble, continuous speech spectrum noise, a CV masker, and a brief noise masker shaped to resemble the onset spectrum of the CV masker. All signals and maskers were presented monotically. Interference by competition was assessed by comparing Multidimensional Scaling solutions derived from each masking condition to that derived from the baseline (quiet) condition. Analysis of the effects of continuous maskers revealed that multitalker babble and continuous noise caused the same amount of change in performance, as compared to the baseline condition, for all listeners. CV masking changed performance significantly more than did brief noise masking, and the hearing-impaired listeners experienced more degradation in performance than normals. Finally, the velar CV maskers (g epsilon and k epsilon) caused significantly greater masking effects than the bilabial CV maskers (b epsilon and p epsilon), and were most resistant to masking by other competing stimuli. The results suggest that speech intelligibility difficulties in the presence of competing segments of speech are primarily attributable to phonetic interference rather than to spectral masking. Individual differences in hearing-impaired listeners' performances are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号